

கல திரட்டுக்கலை/புதிய பாடத்திட்டம்/New Syllabus

NEW
Sri Lanka Department of Examinations, Sri Lanka

අධ්‍යාපන පොදු සහකික පත්‍ර (ලෙසේ පෙළ) විභාගය, 2019 අගෝස්තු කළමනිප් පොතුත් තුරාතුරුප පත්තිර (ශ්‍යාරු තුරු)ප ප්‍රීතිස, 2019 ඉකස්ස් General Certificate of Education (Adv. Level) Examination, August 2019

ശാസ്ത്രിക വീഡിയോ പ്രസ്തുതികളില് Physics

01 T I

09.08.2019 / 0830 – 1030

படிய டெக்கி
இரண்டு மணித்தியாலம்
Two hours

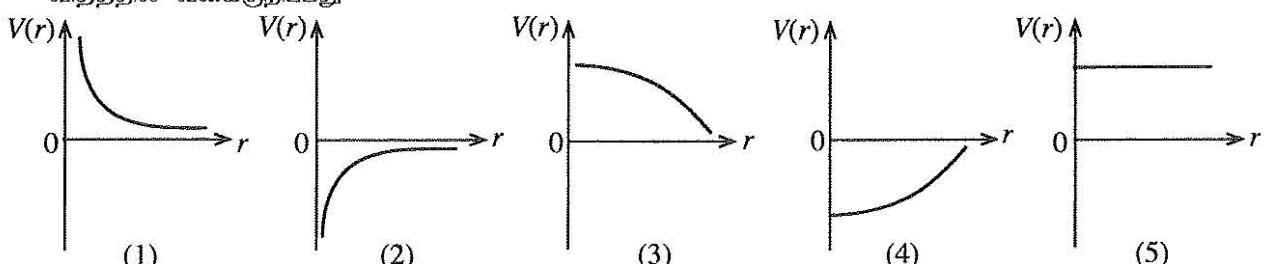
அயிவுறுத்தல்கள் :

- * இவ்வினாத்தான் 12 பக்கங்களில் 50 வினாக்களைக் கொண்டுள்ளது.
- * எல்லா வினாக்களுக்கும் விடை எழுதுக.
- * விடைத்தானில் தரப்பட்டுள்ள இடத்தில் உமது சுட்டெண்ணை எழுதுக.
- * விடைத்தானின் பிற்பக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களையும் கவனமாக வாசிக்க.
- * 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது மிகப் பொருத்தமான விடையைத் தெரிந்தெடுத்து, அதனைக் குறித்து நிற்கும் இலக்கத்தைத் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தானில் புள்ளி (x) இடுவதன் மூலம் காட்டுக.

- பின்வரும் அலகுகளில் எது ஒர் அடிப்படை அலகங்கு?

 - m
 - J
 - cd
 - K
 - mol

- சுர்ப்பு மாறிலி G இன் பரிமாணங்களைத் தருவது


$$(1) L^2 M^{-1} T^{-1}$$

$$(2) L^2 M^{-2}$$

$$(3) L^2 M^{-2} T^{-1}$$

$$(4) L^3 M^{-1} T^{-2}$$

$$(5) L^3 M^{-2} T^{-2}$$
- இருமுனைவுச்சந்தித் திரான்சிற்றுர் ஒன்று நிரம்பல் நிலையில் தொழிற்படும்போது, மேலும் அதிகரிக்கும் அடி ஓட்டாம்
 - திரான்சிற்றுரை முடும் (ON).
 - திரான்சிற்றுரைத் திறக்கும் (OFF).
 - சேகரிப்பான் ஓட்டத்தை அதிகரிக்கச் செய்யும்.
 - சேகரிப்பான் ஓட்டத்தைக் குறைக்கும்.
 - சேகரிப்பான் ஓட்டத்தை மாற்றுது.
- துணிக்கைப் பெளதிகவியலில் காணப்படும் சான்றுகளின்படி, சடப்பொருள்
 - 6 குவாக்குகளினால் ஆக்கப்பட்டுள்ளது.
 - 6 லெப்ரன்களினால் ஆக்கப்பட்டுள்ளது.
 - 4 குவாக்குகளினாலும் 4 லெப்ரன்களினாலும் ஆக்கப்பட்டுள்ளது.
 - 6 குவாக்குகளினாலும் 4 லெப்ரன்களினாலும் ஆக்கப்பட்டுள்ளது.
 - 6 குவாக்குகளினாலும் 6 லெப்ரன்களினாலும் ஆக்கப்பட்டுள்ளது.
- ஒரு புள்ளித் திணிவு காரணமாக சுர்ப்பு அழுத்தம் $V(r)$ இன் தூரம் r உடனான மாற்றலை மிகச் சிறந்த விகத்தில் வகைகளிப்பது

6. வெப்பமானம் தொடர்பாகப் பின்வரும் கூற்றுகளில் எது சரியானதன்று?

- (1) வெப்பநிலையிடன் மாறுகின்ற ஓர் அளக்கத்தக்க பெளதிகக் கணியம் இருத்தல் வேண்டும்.
- (2) கண்ணாடியுள் இரச வெப்பமானிகள் மெல்லிய கவராலான கண்ணாடிக் குழிழுகளைக் கொண்டுள்ளன.
- (3) பெரிய இரசக் குழிழ் உள்ள கண்ணாடியுள் இரச வெப்பமானியைப் பயன்படுத்துவதன் மூலம் அளவிட்டு வீசை அதிகரிக்கச் செய்யலாம்.
- (4) வெப்பமான இயல்புகள் யாவும் சம உணர்திறன்றறவையென்பதால் இரு வெவ்வேறு வகை வெப்பமானிகள் ஒரே வெப்பநிலையில் சிறிதளவில் வேறுபடும் வாசிப்புகளைத் தரலாம்.
- (5) இரசத்திற்கும் கண்ணாடிக்குமிடையே பெரிய தொடுகைக் கோணம் இருத்தல் கண்ணாடியுள் இரச வெப்பமானியிலிருந்து செம்மையான வாசிப்புகளைப் பெறுவதற்கு அனுகூலமானதாகும்.

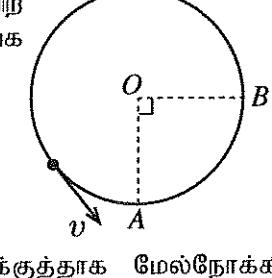
7. கழியுதா அலை, கழியோலி அலை ஆகியவற்றின் பெளதிக் கூறும் பின்வரும் கூற்றுகளைக் கருதுக.

- இரு அலைகளினதும் சக்தி அவற்றின் மீறுங்களைச் சார்ந்திருக்கின்றது.
- இரு அலைகளும் திரவியங்களை அயனாக்கும் ஆற்றலைக் கொண்டுள்ளன.
- இரு அலைகளும் முனைவாக்கப்படலாம்.

மேற்குறித்த கூற்றுகளில் எது / எவை சரியானதன்று / சரியானவையல்ல?

- A மாத்திரம்
- A, B ஆகியன மாத்திரம்
- A, C ஆகியன மாத்திரம்
- B, C ஆகியன மாத்திரம்
- A, B, C ஆகிய எல்லாம்

8. மாறுக கதி உடன் வட்டப் பாதையொன்றில் இயங்கும் பொருளொன்று உருவிற் காட்டப்பட்டுள்ளது. பொருள் A இலிருந்து B இங்கு இயங்கும்போது அதன் வேக மாற்றத்தை குறிப்பது


(1)

(2)

(3)

(4)

(5)

(6)

9. பஞ்சாக்குநர் ஒருவர் தனது இரு கைகளினாலும் ஒரு நிறையை நிலைக்குத்தாக மேல்நோக்கி (நேர்த் திசை) உயர்த்துகின்றார். அப்போது

- அவருடைய கைகளினால் நிறை மீது,
- ஈர்ப்பினால் நிறை மீது,
- நிறையினால் அவருடைய கைகளின் மீது

செய்யப்படும் வேலையின் குறிகள் முறையே

	(a)	(b)	(c)
(1)	+	+	+
(2)	+	-	+
(3)	+	-	-
(4)	-	+	-
(5)	-	-	+

More Past Papers at
tamilguru.lk

10. உருவிற் காட்டப்பட்டுள்ளவாறு E_1, E_2, E_3 ($E_1 < E_2 < E_3$) என்னும் சக்திகளை உடைய ஒரு முன்று மட்ட லேசர்த் (LASER) தொகுதி பற்றிய பின்வரும் கூற்றுகளைக் கருதுக.

- சக்தி மட்டங்கள் 2 இற்கும் 1 இற்குமிடையே லேசர்ச் செயற்பாடு நடைபெறுகின்றது.
- பம்பிக்கும் கதிர்ப்பின் ($E_3 - E_2$) மீறுங் $\frac{E_3 - E_2}{h}$ ஆகும்.
- மட்டம் 3 ஆனது சிற்றுறுதிச் (metastable) சக்தி மட்டம் எனப்படும்.

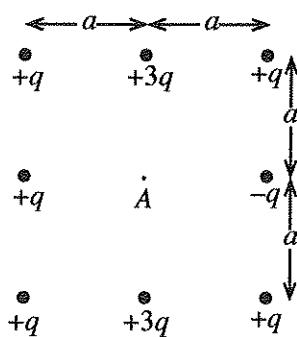
மேற்குறித்த கூற்றுகளில் சரியானது யாது? / சரியானவை யாவை?

- A மாத்திரம்
- B மாத்திரம்
- C மாத்திரம்
- A, C ஆகியன மாத்திரம்
- B, C ஆகியன மாத்திரம்

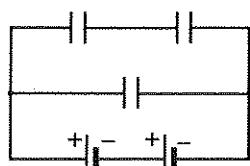
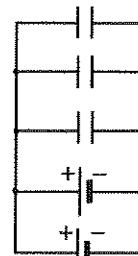
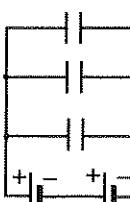
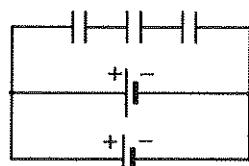
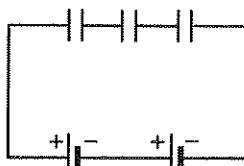
11. புலி வளிமண்டலத்தில் ஓலியின் வேகம் பற்றிய பின்வரும் கூற்றுகளைக் கருதுக.

- மாறு வெப்பநிலையில் குத்துயரத்துடன் அது மாறுவதில்லை.
- அமுக்கம் குறையும்போது அது எப்போதும் அதிகரிக்கும்.
- குத்துயரம் அதிகரிக்கும்போது வெப்பநிலை குறைகின்றமையால் அது குறைவடையும்.

மேற்குறித்த கூற்றுகளில் சரியானது யாது / சரியானவை யாவை ?

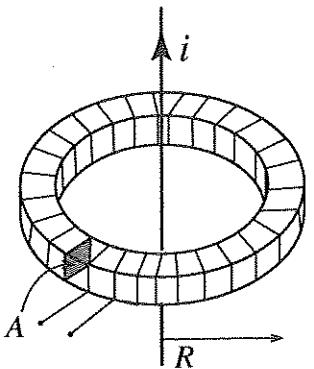

- A மாத்திரம்
- B மாத்திரம்
- C மாத்திரம்
- A, C ஆகியன மாத்திரம்
- A, B, C ஆகிய எல்லாம்

12. பொதுப் பயன்பாடுகளில் X-கதிர் உற்பத்தி தொடர்பான பின்வரும் கூற்றுகளில் சரியான கூற்று அல்லத்து யாது?

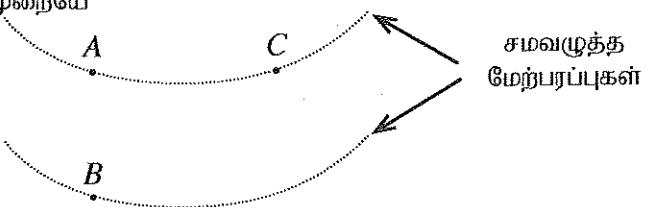





- X-கதிர் உற்பத்தித் தொகுதியில் இரு கற்றுகள் பயன்படுத்தப்படுகின்றன.
- இலத்திரன்கள் மோதடிக்கப்படுவதால் அனோட்டு சேதமடையலாம்.
- கதோட்டை வெப்பமாக்குவதற்குக் குறைந்த வோல்ட்ரூஸு போதுமானது.
- காலப்படும் X-கதிர்களின் சக்தி இழையினுடாகப் பாயும் ஓட்டத்தில் தங்கியுள்ளது.
- இலத்திரன்களின் சக்தி இழப்பைத் தவிர்ப்பதற்கு X-கதிர்க் குழாய் வெற்றிடமாக்கப்படுதல் வேண்டும்.

More Past Papers at
tamilguru.lk

	(a)	(b)	(c)
(1)	+	+	+
(2)	+	-	+
(3)	+	-	-
(4)	-	+	-
(5)	-	-	+


18. சம கொள்ளவும் உள்ள முன்று கொள்ளவிக்கும் சம யின்னியக்க விசை (emf) உள்ள இரு மின்கலங்களும் சுக்தியைச் சேமித்து வைக்கத்தக்க ஒரு கற்றை அமைப்பதற்காகத் தரப்பட்டுள்ளன. பின்வரும் கற்றுகளில் எச்சரியு உயர்ந்தப்படச் சுக்தியைச் சேமிக்கும்?

19. வலு 60 W ஜ உடைய ஓர் இலட்சிய நிலைமாற்றியின் முதன்மைச் சுருளுக்கூடாக 6 A ஓட்டம் பாயும்போது பயப்பு வோல்ட்ரைவு 12 V ஆகும். நிலைமாற்றியின் வகையையும் ஒட்ட விகிதத்தையும் (முதன்மை ஒட்டம் : துணை ஒட்டம்) தரும் சரியான விடையைத் தெரிவிசெய்க.


(1) படிகுறைப்பு, 6 : 5 (2) படிகுறைப்பு, 5 : 6 (3) படியுர்த்து, 1 : 2
 (4) படியுர்த்து, 5 : 6 (5) படியுர்த்து, 6 : 5

20. உருவிற் காட்டப்பட்டுள்ளவாறு சராசரி ஆரை R ஜூயும் குறுக்குவெட்டுப் பரப்பளவு A ஜூயும் உடைய ஒரு பிளாத்திக்கு வளையத்தைச் சுற்றி N எண்ணிக்கையிலான முறைக்குதலைச் சுற்றுவதன் மூலம் ஒரு சுருள் அமைக்கப்பட்டுள்ளது. இச்சுருள் ஓர் ஒட்டம் i ஜக் கொண்டு செல்லும் ஒரு நீண்ட நேர்க் கம்பியுடன் ஒரச்சாக வைக்கப்பட்டுள்ளது. நேர்க் கம்பியினுடாக உள்ள ஒட்டத்தின் மாற்ற வீதம் $i_0 \cos \omega t$ எனின், தூண்டப்படும் மின்னியக்க விசையைத் (emf) தருவது கீழே தரப்பட்ட எக்கோவையாகும்?

(1) $\mu_0 N i_0 \cos \omega t$ (2) $\mu_0 N^2 i_0 \sin \omega t$
 (3) $\frac{\mu_0 A N}{\omega} i_0 \sin \omega t$ (4) $\frac{\mu_0 A N}{2\pi R} i_0 \cos \omega t$
 (5) $\frac{\mu_0 A N}{4\pi^2 R^2} i_0 \cos \omega t$

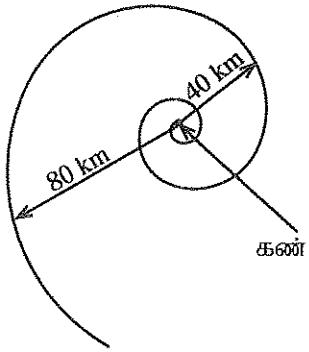
21. உருவிற் காட்டப்பட்டுள்ளவாறு ஒரு சமவழுத்த மேற்பரப்புகள் மீது உள்ள A, B, C என்னும் புள்ளிகளைக் கருதுக. ஒரு புரோத்தன் A இலிருந்து B இங்கு இயங்கும்போது மின் புலத்தினால் அதன் மீது $3.2 \times 10^{-19} \text{ J}$ வேலை செய்யப்படுகின்றது. இலத்திரனைன்றின் ஏற்றும் $-1.6 \times 10^{-19} \text{ C}$ ஆகும். V_{AB}, V_{BC}, V_{CA} ஆகிய மின் அழுத்த வித்தியாசங்கள் முறையே

(1) 2 V, -2 V, 0 V ஆகும்.
 (2) 2 V, -2 V, 2 V ஆகும்.
 (3) -2 V, 2 V, 0 V ஆகும்.
 (4) 0.5 V, -0.5 V, 0 V ஆகும்.
 (5) -0.5 V, 0.5 V, 0 V ஆகும்.

22. வான் பொருளான்று ஒரு குறித்த நேரத்தில் புவியின் மையத்தையும் சந்திரனின் மையத்தையும் தொடுக்கும் கோட்டின் நடுப் புள்ளியில் உள்ளது. சந்திரனின் திணிவு புவியின் திணிவின் 0.0123 மடங்காகும். சந்திரனதும் புவியினதும் மையங்களுக்கிடைலான தாரம் புவியின் 60 மடங்காகுமெனக் கொள்க. புவி, சந்திரன் ஆகிய இரண்டினதும் ஈரப்புக் காரணமாகப் பொருளின் ஆர்மூகல் g சார்பாக அண்ணளவில்

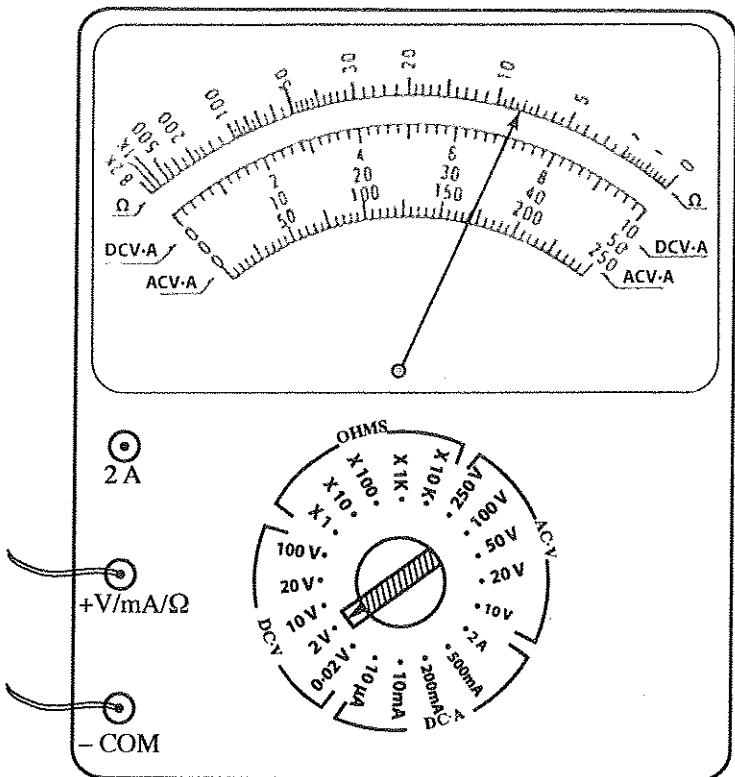
(1) $1.1 \times 10^{-6} g$ (2) $1.1 \times 10^{-3} g$ (3) $3.3 \times 10^{-2} g$ (4) $0.5 g$ (5) $1.0 g$

23. மேற்பரப்பின் பரப்பளவு 500 cm^2 ஜ உடைய ஒரு கிடைத் தகடுகளுக்கிடையே உள்ள 2 cm இடைவெளியில் பிக்குமைக் குணகம் 0.2 N s m^{-2} ஆகவென்றால் ஓர் எண்ணெய் நிரப்பப்பட்டுள்ளது. கீழ்க் கூட்டை ஒய்வில் வைத்துக்கொண்டு மேல் தகட்டில் ஓர் 5 N கிடை விசை பிரயோகிக்கப்படுகின்றது. எண்ணெய்ப் படைகளின் வேகங்கள் இடைவெளிக்குக் குறுக்கே ஏகப்ரிமானமாக மாறுமெனின், எண்ணெயின் நடுப் படையின் வேகம் யாது?

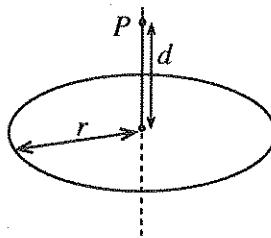

(1) 2.5 m s^{-1} (2) 5 m s^{-1} (3) 10 m s^{-1} (4) 25 m s^{-1} (5) 50 m s^{-1}

24. இருவாயியொன்றும் தடையியொன்றும் ஒரு குறித்த வித்தில் தொடுக்கப்பட்டு அவற்றின் ஒரு முடிவிடங்கள் வெளி இணைப்பிற்காக விடப்பட்டுள்ளன. வெளிப்புற முடிவிடங்களுக்குக் குறுக்கே 1 V அழுத்தம் ஒன்று பிரயோகிக்கப்படும்போது சுற்றினுடாகப் பாயும் மின்னோட்டம் 50 mA ஆகும். இப்பிரயோக அழுத்தமானது புறமாற்றப்படும்போது (reversed) மின்னோட்டம் இருமடங்காகின்றது. இருவாயியின் முன்முகக் கோடல் தடையும் தடையியின் பெறுமானமும் யாலை?

தடை (Ω)	
இருவாயி	தடையி
(1) 0	20
(2) 10	10
(3) 10	20
(4) 20	10
(5) 20	20

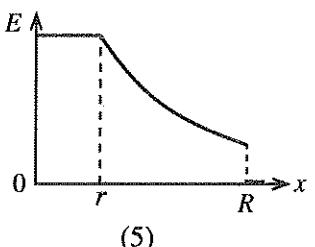
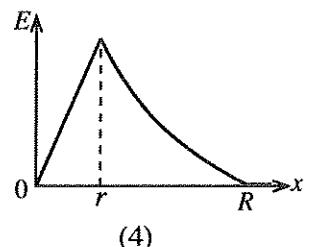
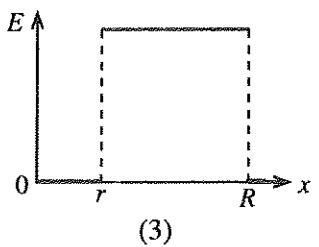
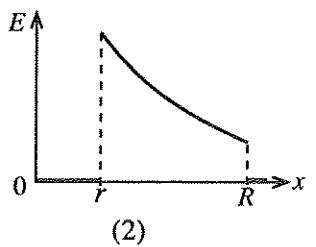
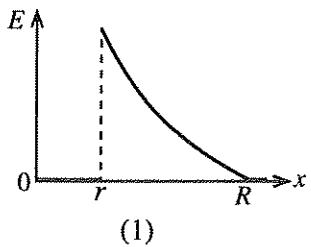
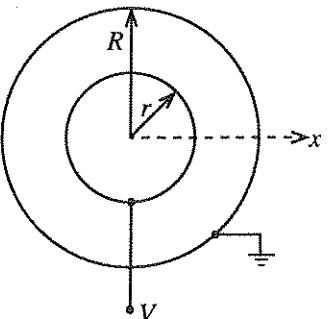

More Past Papers at
tamilguru.lk

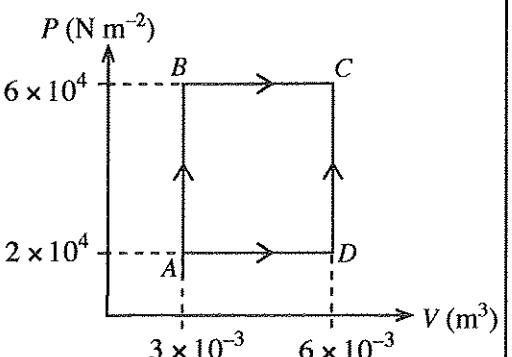
25. உருவிற் காட்டப்பட்டுள்ளவாறு குறாவளியொன்றின் வளித் திணிவொன்று அதன் கண்ணேச் சுற்றி ஒரு சுருளிப் பாதையில் இயங்குகின்றது. கண்ணின் மையத்திலிருந்து 80 km ஆரைத் தூரத்தில் அவ்வளித் திணிவின் வேகம் 150 km h^{-1} ஆகும். கண்ணின் மையத்திலிருந்து 40 km ஆரைத் தூரத்தில் அதே வளித் திணிவின் வேகம் யாதாக இருக்கும்?


26. குறிஞ்சு ஒன்றுடன் தொடுக்கப்பட்ட ஒர் ஒப்புளிப் பல்மானி உருவிற் காட்டப்பட்டுள்ளது. பல்மானியின் வாசிப்பு

- (1) $8\ \Omega$
- (2) $7\ \text{mA}$
- (3) $1.4\ \text{V}$
- (4) $7\ \text{V}$
- (5) $14\ \text{V}$

27. ஆரை r ஜி உடைய மின்னைக் கடத்தா வளையமொன்றின் மீது ஒரு பெரிய எண்ணிக்கையிலான புள்ளி ஏற்றுங்கள் சீராகப் பரம்பியுள்ளன. வளையத்தின் மீது உள்ள மொத்த ஏற்றும் Q எனின், உருவிற் காட்டப்பட்டுள்ளவாறு வளையத்தின் அச்சு மீது இருக்கும் புள்ளி P இல் உள்ள நிலையின் அழுத்தம் யாது?







(1) $\frac{Q}{4\pi\epsilon_0 d}$ (2) $\frac{Q}{4\pi\epsilon_0 r}$
 (3) $\frac{Q}{8\pi^2\epsilon_0 rd}$ (4) $\frac{Q}{4\pi\epsilon_0 \sqrt{r^2 + d^2}}$
 (5) $\frac{rQ}{4\pi\epsilon_0 d \sqrt{r^2 + d^2}}$


28. மனிதக் குருதிச் சுற்றோட்டத் தொகுதியானது, ஒவ்வொன்றும் சராசரி விட்டம் 8 மீ ஜ் உடைய ஏறத்தாழ ஒரு பில்லியன் (10^9) மயிர்த்துளைக் கலன்களை உடையது. இதயத்திலிருந்து நிமிடத்திற்கு 5 லீற்றுர் என்னும் வீதத்தில் குருதி பம்பப்படுமெனின், மயிர்த்துளைக் கலன்களினாடாகப் பாயும் குருதியின் சராசரிக் கதி நிமிடத்திற்கு cm இல் யாது?

$$(1) \frac{1}{32\pi} \quad (2) \frac{25}{16\pi} \quad (3) \frac{25}{4\pi} \quad (4) \frac{125}{16\pi} \quad (5) \frac{125}{4\pi}$$

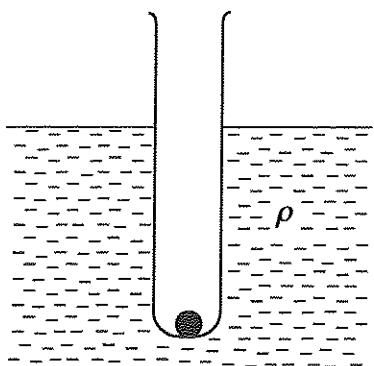
29. உருவிற் காட்டப்பட்டுள்ளவாறு இரு மெல்லிய உலோகக் கோள் ஒடுகள் ஒருமையாக வைக்கப்பட்டுள்ளன. உள் ஒடு ஓர் அழுத்தம் V இல் வைக்கப்பட்டிருக்கும் அதே வேளை வெளி ஒடு புவித்தொடுப்புச் செய்யப்பட்டுள்ளது. மையத்திலிருந்து தூரம் x உடன் மின்புலம் E இன் மாற்றலை மிகச் சிறந்த விதத்தில் வகைக்குறிப்பது

30. ஒர் இலட்சிய வாயு $P-V$ வரைபடத்திற் காட்டப்பட்டுள்ளவாறு நிலை A இலிருந்து நிலை C இற்கு ABC, ADC ஆகிய இரு வெவ்வேறு பாதைகள் வழியே விரிவடைகின்றது. AB, BC ஆகிய செயல்முறைகளின்போது வாயுவினால் உறிஞ்சப்படும் வெப்பங்கள் முறையே $200\text{ J}, 700\text{ J}$ ஆகும். பாதை ADC வழியே வாயு விரிகையில் உட்சக்தியில் ஏற்படும் மாற்றம் மது?

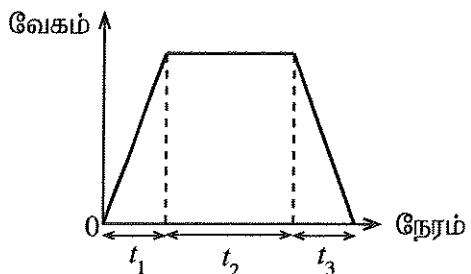
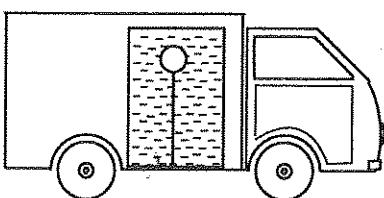
31. நிலத்திலிருந்து 1 m உயரத்தில் பந்தொன்று சுயாதீனமாக விழவிடப்படுகிறது. ஒவ்வொரு பின்னதைப்பின்போதும் அதன் கதி 25% இனாற் குறையுமெனின், முன்று பின்னதைப்புக்கஞ்குப் பின்னர் பந்து எழும் உயரம் யாது?

(1) $\frac{3}{4}$ m (2) $\left(\frac{3}{4}\right)^2$ m (3) $\left(\frac{3}{4}\right)^3$ m (4) $\left(\frac{3}{4}\right)^6$ m (5) $\left(\frac{3}{4}\right)^9$ m

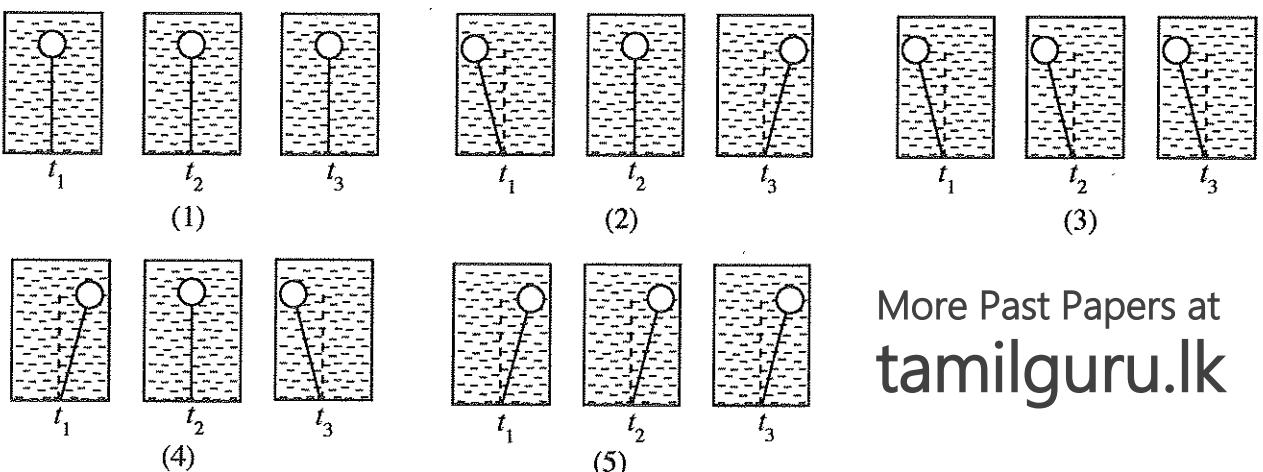
32. கற்றிவரும் செய்மதி ஒன்றின் ஒரு பகுதி, வேலைச் சார்பு 5 eV ஜ் உடைய ஓர் உலோகத்தினால் மூலாமிடப்பட்டுள்ளது. பினாங்கின் மாறிலி $4.1 \times 10^{-15} \text{ eV s}$ உம் ஒனியின் கதி $3 \times 10^8 \text{ m s}^{-1}$ உம் ஆகும். மூலாமிடப்பட்ட உலோகத்திலிருந்து ஓர் இலத்திரனை வெளியேற்றுவதற்கு அதன் மீது படும் குறியவொளிக்கு இருக்கக்கூடிய மிகவும் நண்ட அலைநீளம் யாது?


(1) 12.3 nm (2) 246 nm (3) 683 nm (4) 800 nm (5) 1230 nm

33. நியம ஒளிப்பட வழக்கியொன்றில் (slide) உள்ள படமொன்றின் பருமன் $30\text{ mm} \times 40\text{ mm}$ ஆகும். தனிவில்லை வழக்கி எறிவையொன்றினால் (slide projector) வழக்கியின் ஒர் உடுப்பெருத்த விம்பம் எறிய வில்லையிலிருந்து 4.0 m இங்கு அப்பால் உள்ள ஒரு திரை மீது எறியப்படுகின்றது. திரை மீது உள்ள விம்பத்தின் பருமன் $1.2\text{ m} \times 1.6\text{ m}$ எனின், எறிய வில்லையின் குவியத் தூரம் யாதாக இருக்கும்?

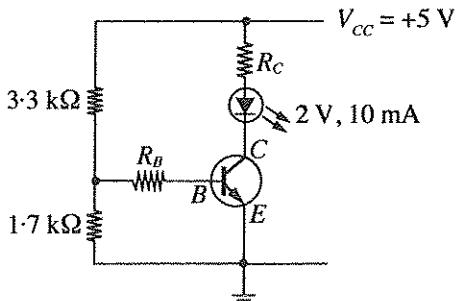


(1) 4.9 cm (2) 9.8 cm (3) 10.2 cm (4) 49 cm (5) 98 cm

34. ஒரு சோதனைக் குழாயின் அடியில் ஓர் உலோகக் குண்டை வைப்பதன் மூலம் அச்சோதனைக் குழாய் உருவிற் காட்டப்பட்டுள்ளவாறு ஒரு பாய்மத்தில் நிலைக்குத்தாக மிதக்குமாறு செய்யப்பட்டுள்ளது. குழாயினதும் குண்டினதும் மொத்தத் திணிவு m , பாய்மத்தின் அடர்த்தி ρ , குழாயின் குறுக்கு வெட்டுப் பரப்பளவு A ஆகும். பாய்மத்தின் பரப்பிழுவையினதும் பிசுக்குமையினதும் விளைவைப் பூர்க்கணிக்கலாம். குழாய்க்கு ஒரு சிறிய நிலைக்குத்து இடப்பெயர்ச்சி கொடுக்கப்படுமெனின், குழாயின் தொடர்ந்து வரும் இயக்கத்தின் அலைவுக் காலம் யாது?


(1) $2\pi\sqrt{\frac{A\rho g}{m}}$ (2) $2\pi\sqrt{\frac{m}{A\rho g}}$ (3) $2\pi\sqrt{\frac{2m}{A\rho g}}$
 (4) $2\pi\sqrt{\frac{m}{2A\rho g}}$ (5) $2\pi\sqrt{\frac{mg}{A^2\rho}}$

35. ஓர் இலோசன இழையின் ஒரு நுனியுடன் இணைக்கப்பட்ட திணிவற்ற பாலுானோன்றைக் கருதுக. உருவிற் காட்டப்பட்டுள்ளவாறு இழையின் மற்றைய நுனி வண்டியொன்றுடன் பொருத்தப்பட்டுள்ள நிதி தாங்கியொன்றின் அடியுடன் இணைக்கப்பட்டுள்ளது. பலுள் நீரில் முற்றாக அமிழ்ந்துள்ளது. வண்டியின் இயக்கத்தை வேக - நேர வரைபு காட்டுகின்றது.

t_1 , t_2 , t_3 ஆகிய நேர ஆயிடைகளின்போது நிதி தாங்கியினுள்ளே பலுளினதும் இழையத்தினதும் அமைவுகளை மிகச் சிறந்த விதத்தில் வகைக்குறிப்பது

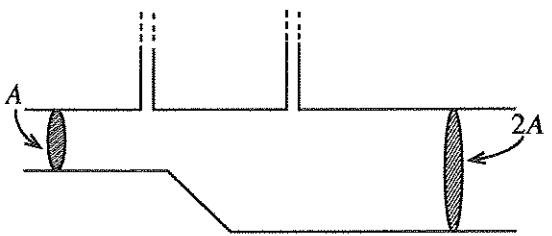

More Past Papers at
tamilguru.lk

36. ஓர் ஒப்பமான கிடைமேற்பரப்பின் மீது வைக்கப்பட்டுள்ள கனவளவிற் சமமான நான்கு உலோகக் குண்டுகளைக் கருதுக. முதல் மூன்று குண்டுகள் ஒவ்வொன்றினதும் திணிவு m ஆக இருக்கும் அதே வேளை நான்காம் குண்டின் திணிவு $2m$ ஆகும். அவை ஓரே நேர்கோட்டில் சம இடைத்தூரங்களில் உள்ளன. குண்டுகளுக்கிடையே ஒரு தொடர் ஏகபரிமாண மீள்தன்மை மோதுகைகள் ஏற்படத்தக்கதாக முதலாம் குண்டு கதி உடைன் இயங்கி இரண்டாம் குண்டுடன் மோதுகின்றது. எல்லா மோதுகைகளுக்கும் பின்னர் ஒவ்வொரு குண்டினதும் இயக்கத்தை மிகச் சிறந்த விதத்தில் வகைக்குறிப்பது

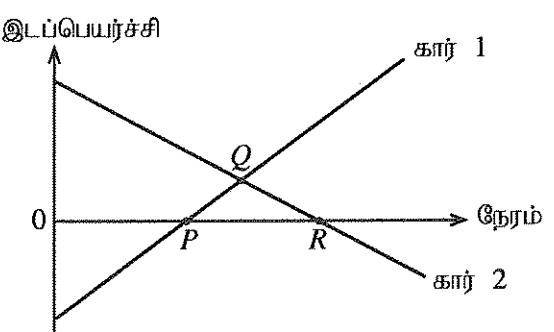
(1) (2) (3) (4) (5) v $\frac{v}{2}$ $\frac{3v}{4}$ $\frac{2v}{3}$ $\frac{5v}{6}$

37. ஒளி காலும் இருவாயியின் (LED) உத்தமத் தொழிற்பாட்டுக்காக அதன் முன்முக வோல்ட்ராஸவும் ஓட்டமும் முறையே 2 V, 10 mA ஆக இருந்தல் வேண்டும். திரான்சிர்றரின் $V_{BE} = 0.7$ V ஆகவும் ஓட்ட நயம் $\beta = 100$ ஆகவும் $V_{CE(sat)} = 0.1$ V ஆகவும் உள்ளன. உருவில் தரப்பட்டுள்ள சுற்றில் ஒளி காலும் இருவாயியின் உத்தமத் தொழிற்பாட்டுக்குத் தேவையான R_B, R_C ஆகியவற்றின் பெருமானங்கள் யாவை?

- (1) $R_B = 100 \Omega$, $R_C = 1 \text{ k}\Omega$
- (2) $R_B = 1 \text{ k}\Omega$, $R_C = 1 \text{ k}\Omega$
- (3) $R_B = 1 \text{ k}\Omega$, $R_C = 290 \Omega$
- (4) $R_B = 10 \text{ k}\Omega$, $R_C = 1 \text{ k}\Omega$
- (5) $R_B = 10 \text{ k}\Omega$, $R_C = 290 \Omega$



38. நீரில் மிதக்கும் ஒரு செவ்வக மரக் குற்றியின் மீது ஒர் உலோகத் துண்டு பொருத்தப்பட்டுள்ளது. உருவிற் காட்டப்பட்டுள்ளவாறு மரக் குற்றியின் கனவளவில் 50% ஆனது நீரில் அமிழ்ந்துள்ளது. உலோகத் துண்டும் மரக் குற்றியும் சம திணிவுள்ளன. உலோகத் துண்டுடன் மரக்குற்றி தலைக்கீழாகக் கவிழ்க்கப்பட்டால் மரக் குற்றியின் கனவளவின் எஞ்சு மாற்றம் கீழ்க்கண்ட மூலிகை ஒரு?


(1) 50% இலும் சுற்றுக் குறைவாகும் (2) 50% இலும் மிகக் குறைவாகும் (3) 50%
 (4) 50% இலும் சுற்றுக் கூடவாகும் (5) 50% இலும் மிகக் கூடவாகும்

39. உருவிற் காட்டப்பட்டுள்ளவாறு ஒரு கிடைக் குழாயினுடாக நெருக்க முடியாத திரவமொன்று உறுதியாகப் பாய்கின்றது. இரு ஒடுக்கமான நிலைக்குத்துக் குழாய்கள் கிடைக் குழாயின் மீது குறுக்கு வெட்டுப் பறப்பளவுகள் A , $2A$ ஆகவுள்ள இரு இடங்களில் நிலைப்படுத்தப்பட்டுள்ளன. இரு நிலைக்குத்துக் குழாய்களிலும் உள்ள திரவ நிரல்களின் உயர் வித்தியாசம் h எனின், குழாயினுடாகத் திரவத்தின் பாய்ச்சல் வீதம்

(1) $A\sqrt{2gh}$ (2) $A\sqrt{6gh}$
 (3) $A\sqrt{\frac{3gh}{2}}$ (4) $2A\sqrt{\frac{gh}{3}}$
 (5) $2A\sqrt{\frac{2gh}{3}}$

40. ஒரு வீதிக்கு அருகில் உள்ள விளக்குக் கம்பமொன்று சார்பாக இரு மோட்டர்க் கார்களின் இயக்கங்களின் இடப்பெயர் ச்சி - நேர வரைபுகள் உருவிற் காட்டப்பட்டுள்ளன. விளக்குக் கம்பத்திற்கு வலது திசையில் இடப்பெயர் ச்சி நேரெனக் கொள்க. வரைபுகளிற் குறிக்கப்பட்டுள்ள P, Q, R என்னும் புள்ளிகள் தொடர்பாக மோட்டர்க் கார்களின் இயக்கம் பற்றி மாணவன் ஒருவனால் பின்வரும் கூற்றுகள் மன்னைக்கப்பட்டன.

41. மாறாச் சீழ்க்கையிடும் (விசில்) மீறுறனை உடைய ஒரு சீழ்க்கையிடும் வாணம் நிலைக்குத்தாக மேல்நோக்கி அனுப்பப்படுகின்றது. அது தொடக்கத்தில் ஓர் ஆர்மூடுகலுடனும் பின்னர் ஓர் அமர்மூடுகலுடனும் சென்று இறுதியாக ஓய்வுக்கு வருவதற்கு முன்பாக வெடிக்கின்றது. தரை மீது வாணத்திற்கு நேரே கீழேயுள்ள நோக்குநர் ஒருவர் வாணத்தின் சீழ்க்கையிடும் ஒலியைக் கேட்கின்றார்.

(A) வாய்க்காலிக்கிராப் பார்க்கின்றவரிடம் வீரமிக்க வாய்க்கால் போக

(A) ஆர்மூடுகலின்போது, அது சீழ்க்கையிடும் மீறுவிலும் உயர்வாக இருக்கும் அதே வேளை நேரத்துடன் குறைவடைகின்றது.

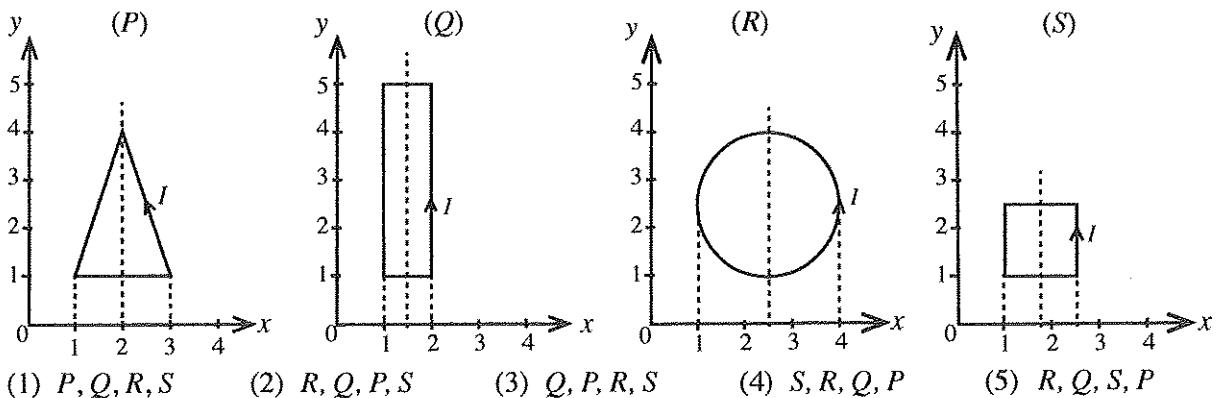
(B) அமர்மூடுகலின்போது, அது சீழ்க்கையிடும் மீறுவிலும் குறைவாக இருக்கும் அதே வேளை நேரத்துடன் அதிகரிக்கின்றது.

(C) வெடிப்பதற்குச் சற்று முன்பாக அது சீழ்க்கையிடும் மீறுவதுக்குச் சமமாக இருக்கின்றது. குறித்த கூற்றுகளில் சரியானது யாது / சரியானவை யாவை?

A மாத்திரம் (2) B மாத்திரம் (3) C மாத்திரம்

A, B ஆகியன மாத்திரம் (5) B, C ஆகியன மாத்திரம்

42. 700 g திணிவள்ள ஓர் உலோகப் பாத்திரத்தில் 1 லீற்றர் நீர் வெப்பநிலை 27 °C இல் உள்ளது. வெப்பநிலை 120 °C இல் உள்ள 300 g திணிவை உடைய உருக்குக் குண்டு ஒன்று இந்நீர்ப் பாத்திரத்தில் இடப்படும்போது நீரின் இறுதி வெப்பநிலை 30 °C என அளக்கப்பட்டது. உருக்கினதும் நீரினதும் தன்வெப்பக் கொள்ளலவுகள் முறையே 500 J kg⁻¹ K⁻¹, 4200 J kg⁻¹ K⁻¹ ஆகும். அட்வவண்ணயில் தரப்பட்டுள்ள உலோகங்களில், பாத்திரம் செய்யப்பட்டுள்ள உலோகமாக இருக்கக்கூடியது எது?


(1) அலுமினியம் (2) செம்பு (3) சுயம்
(4) இரும்பு (5) வெள்ளி

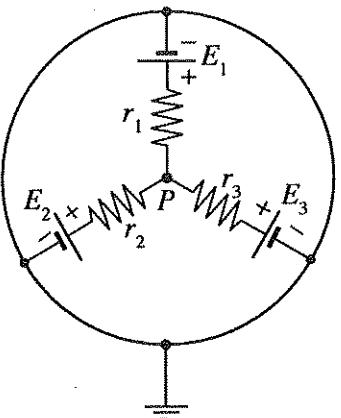
உலோகம்	தன்வெப்பக் கொள்ளளவு ($J \text{ kg}^{-1} \text{ K}^{-1}$)
அலுமினியம்	900
இரும்பு	450
செம்பு	385
வெள்ளி	230
காயம்	128

43. n_1, n_2, n_3 ($n_2 > n_1, n_3$) என்னும் முறிவுச் சுட்டிகளை உடைய முன்று செங்கோண அறியங்கள் உருவிற் காட்டப்பட்டுள்ளவாறு ஒரு மேசை மீது ஒன்றுக்கொன்று மிக அண்மையில் வைக்கப்பட்டுள்ளன. அறியங்களின் தொடுகை மேற்பறப்புகளுக்கிடையே இடைவெளிகள் இல்லை. படுகைக் கோணம் i ஆக இருக்குமாறு முகம் AB இனுடாக நுழையும் ஒரு கதிர் AB, BC, CD, DE ஆகிய முகங்களில் முறிவுக்கு உட்பட்டு முகம் DE BC, CD ஆகிய முகங்களில் முறிவுக் கோணங்கள் பிழையானது யாது?

(1) $\sin i = n_1 \sin r_1$ (2) $n_2 \sin r_2 = n_1 \cos r_1$ (3) $\sin i = n_3 \cos r_3$
 (4) $n_2 \cos r_2 = n_3 \sin r_3$ (5) $\cos i = n_3 \cos r_3$

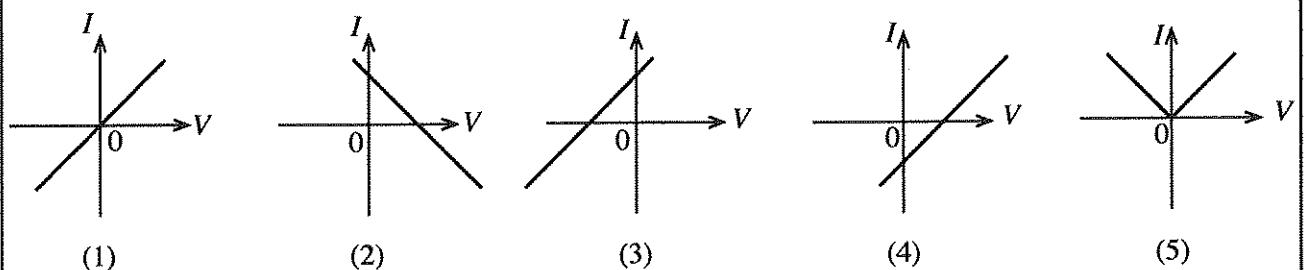
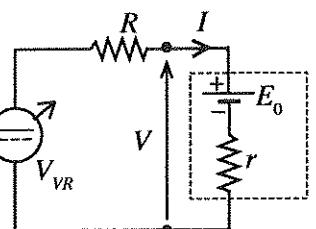
44. உருக்களிற் காட்டப்பட்டுள்ளவாறு xy தளத்தின் மீது வைக்கப்பட்டுள்ள தனி முறைக்கைக் கொண்ட கம்பித் தடங்கள் ஒவ்வொன்றும் ஒரே ஒட்டம் 1 ஐக் கொண்டு செல்கின்றன. x - அச்சின் நேர்த் திசையில் ஒரு சீரான காந்தப் புலம் பிரயோகிக்கப்படுகின்றது. ஒவ்வொரு கம்பித் தடமும் அதன் சமச்சீர்ச்சப் பற்றிச் சுயாதீனமாக காந்தப் புலத்திற்குச் செங்குத்தாகச் சுழல முடியும் எனக் கருதுக. தடங்களின் மீது தாக்கும் தொடக்க முறைக்கங்களின் இறங்குவரிசையில் தடங்கள் ஒழுங்குபடுத்தப்பட்டுள்ள தெரிவு யாது?

45. E_1, E_2, E_3 என்னும் மின்னியக்க விசைகளையும் (emf) முறையே r_1, r_2, r_3 என்னும் அகத் தடைகளையும் உடைய மூன்று கலங்கள் உருவிற் காட்டப்பட்டுள்ளவாறு தொடுக்கப்பட்டுள்ளன. கந்தின் புள்ளி P இல் உள்ள அமுத்தத்தைப் பின்வரும் கோவைகளில் எது தருகின்றது?

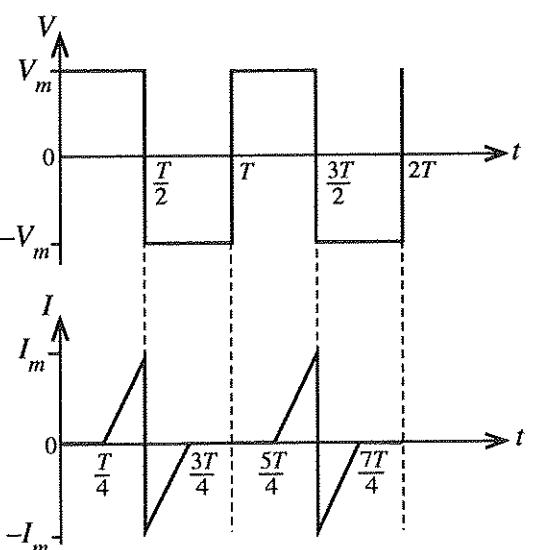
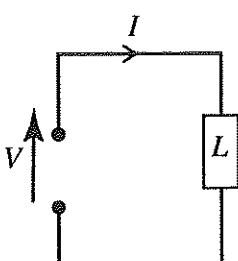

(1) $\frac{E_1 + E_2 + E_3}{3}$

(2) $\frac{E_1 E_2 E_3}{E_1 E_2 + E_2 E_3 + E_3 E_1}$

(3) $\frac{E_1 r_1^2 + E_2 r_2^2 + E_3 r_3^2}{r_1 r_2 + r_2 r_3 + r_1 r_3}$



(4) $\frac{E_1 r_2 r_3 + E_2 r_1 r_3 + E_3 r_1 r_2}{r_1 r_2 + r_2 r_3 + r_1 r_3}$

(5) $\frac{E_1 r_2 r_3 + E_2 r_1 r_3 + E_3 r_1 r_2}{r_1 r_2 r_3}$

46. மின்னியக்க விசை (emf) E_0 ஜெயும் அகத் தடை r ஜெயும் உடைய பற்றியே ஒன்றைக் கருதுக. உருவிற் காட்டப்பட்டுள்ளவாறு அது புறமாற்றத்தக்க ஒரு மாறும் நேரோட்ட (dc) வோல்ட்ஜனவு முதலுடனும் தடையில் R உடனும் தொடராகத் தொடுக்கப்பட்டுள்ளது. மாறும் முதலின் வோல்ட்ஜனவு V_{VR} ஜெய மாற்றும்போது V இற்கு எதிரே I இன் வரைபை மிகச் சிறந்த விதத்தில் வகைகுறிப்பது

மாறும் dc வோல்ட்ஜனவு முதல்
(புறமாற்றத்தக்கது)

47. உருவிற் காட்டப்பட்டுள்ள கற்றைக் கருதுக. சுமை L இற்குக் குறுக்கே பிரயோகிக்கப்பட்டுள்ள வோல்ட்ஜனவினதும் அதனாடான ஒட்டத்தினதும் அலை வடிவங்கள் வரைபுகளால் காட்டப்பட்டுள்ளன.

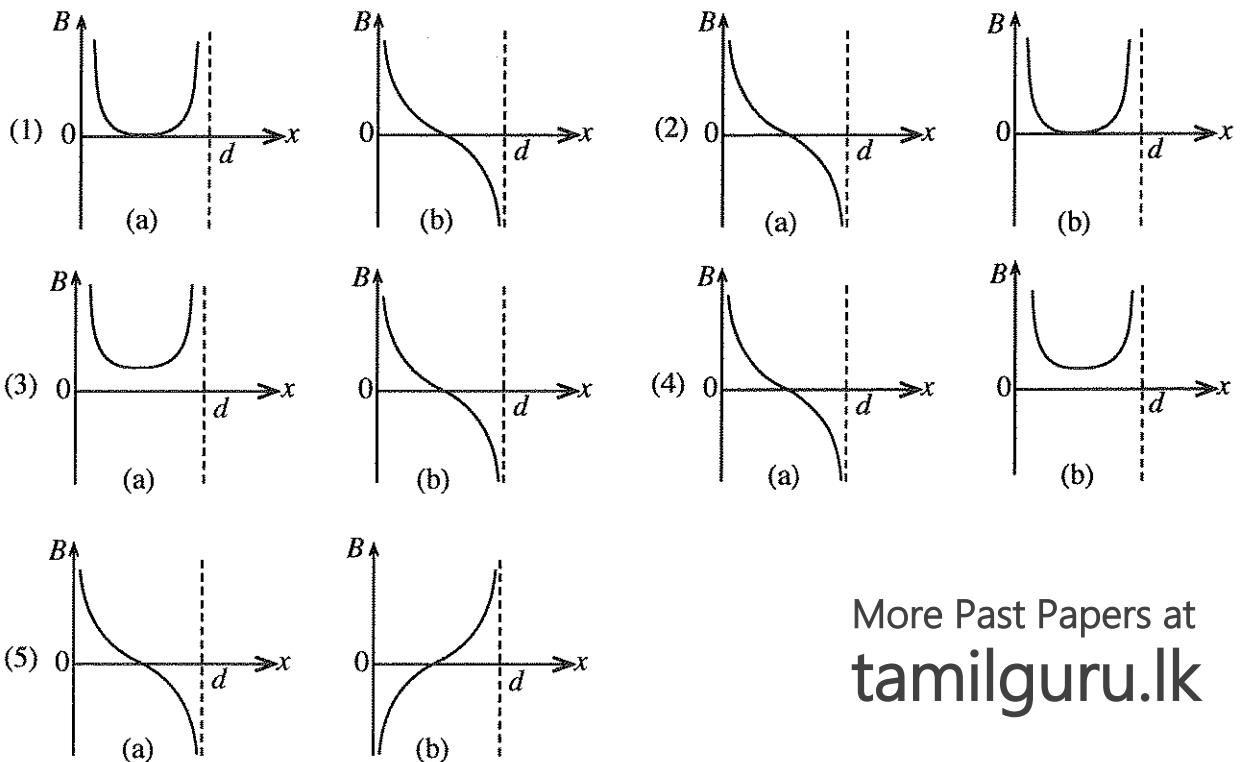
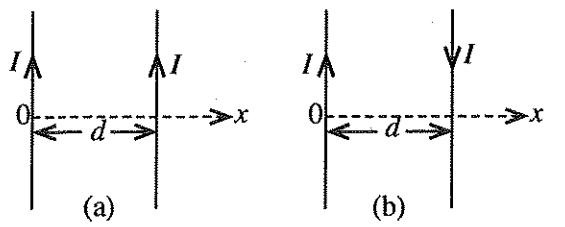
சுமையில் ஏற்படும் சராசரி வலு விரயம்

(1) 0

(2) $\frac{V_m I_m}{4}$

(3) $\frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}}$

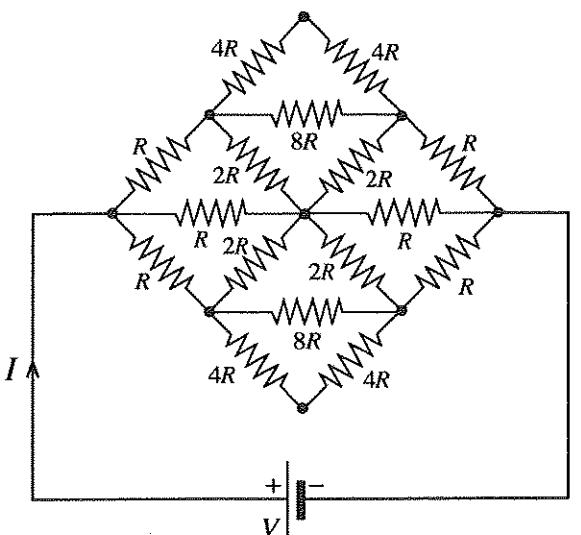
(4) $V_m I_m$



(5) $2V_m I_m$

48. இரு நீண்ட சமாந்தரமான நேர்க் கம்பிகள் வெற்றிடத்தில் வைக்கப்பட்டுள்ளன. உருக்களிற் காட்டியவாறு பின்வரும் இரு சந்தர்ப்பங்களையும் கருதுக.

(a) கம்பிகளினாடாக ஒரே மின்னோட்டம் I ஒரே திசையில் பாய்கின்றது.

(b) கம்பிகளினாடாக ஒரே மின்னோட்டம் I எதிர்த் திசைகளில் பாய்கின்றது.

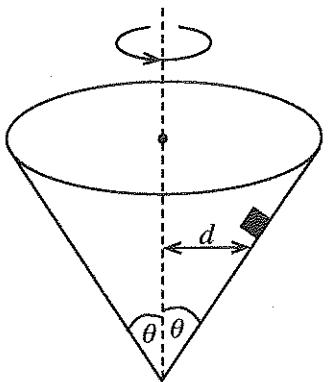

தானை நோக்கிய காந்தப் பாய அடர்த்தியின் திசையை நேர்கை கருதுக. இரு கம்பிகளுக்குமிடையே உள்ள காந்தப் பாய அடர்த்தி B இன் மாற்றலை மிகச் சிறந்த விதத்தில் வகைகுறிக்கும் வரைபுச் சோடி யாது?

More Past Papers at
tamilguru.lk

49. உருவிற் காட்டப்பட்டுள்ள சுற்றின் பற்றியினாடாகப் பாயும் ஓட்டம் யாது?

(1) $\frac{V}{8R}$
 (2) $\frac{V}{4R}$
 (3) $\frac{V}{2R}$
 (4) $\frac{V}{R}$
 (5) $\frac{2V}{R}$

50. உருவிற் காட்டப்பட்டுள்ளவாறு அச்சு நிலைக்குத்தாகவும் உச்சி கீழேயும் இருக்கும் ஒரு செவ் வட்டக் கூம்பினுள்ளே சிறிய பொருளான்று வைக்கப்பட்டுள்ளது. கூம்பின் உட்கவருக்கும் பொருளுக்குமிடையே உள்ள நிலையியல் உராய்வுக் குணகம் μ ஆகும். உட்கவரில் பொருளானது நிலைக்குத்து அச்சிலிருந்து d தூரத்தில் உள்ளபோது, அது வழுக்காமல் இருப்பதற்கான சூழலும் கூம்பின் அதிகூடிய கோண வேகம் அதன் அச்சுப்பற்றி யாது?


$$(1) \sqrt{\frac{g(\cos \theta - \mu \sin \theta)}{d(\sin \theta + \mu \cos \theta)}}$$

$$(2) \sqrt{\frac{g(\sin \theta - \mu \cos \theta)}{d(\cos \theta + \mu \sin \theta)}}$$

$$(3) \sqrt{\frac{g(\cos \theta + \mu \sin \theta)}{d(\sin \theta - \mu \cos \theta)}}$$

$$(4) \sqrt{\frac{g(\sin \theta + \mu \cos \theta)}{d(\cos \theta - \mu \sin \theta)}}$$

$$(5) \sqrt{\frac{g}{d \tan \theta}}$$

நல திரட்டையு/புதிய பாடத்திட்டம்/New Syllabus

NEW **Department of Examinations Sri Lanka**

අධ්‍යාපන පොදු සහතික පෙනු (ලෙස් පෙනු) විභාගය, 2019 අගෝස්තු කළවිප් පොතුත් තරාතුරුප පත්තිර (ඉයුර තුරු)ප පර්ශ්‍රීස, 2019 ඉකස්ස් General Certificate of Education (Adv. Level) Examination, August 2019

ହେଲିକ ବିଦ୍ୟାର	II
ପେଣ୍ଟିକଲିଯାର	II
Physics	II

01 T II

13.08.2019 / 0830 – 1140

ஏடு குகை
மூன்று மணித்தியாலும்
Three hours

அமுகர கியவில் காலை	- தெனிந்தூ 10 கி
மேலதிக வாசிப்பு நேரம்	- 10 நிமிடங்கள்
Additional Reading Time	- 10 minutes

வினாத்தானள வாசித்து, வினாக்களைத் தெரிவிசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை எழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

கட்டும் :

ಮಹಕ್ಕಿಯಮ್ :

- * இவ்வினாத்தாள் 16 பக்கங்களைக் கொண்டுள்ளது.
- * இவ்வினாத்தாள் A, B என்னும் இரு பகுதிகளைக் கொண்டுள்ளது. இரு பகுதிகளுக்கும் ஒதுக்கப்பட்ட நேரம் முன்று மணித்தியாலம் ஆகும்.
- * கணிப்பானைப் பயன்படுத்துக்கூடாது.

பகுதி A - அமைப்புக் கட்டுரை (பக்கங்கள் 2 - 8)

எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடப்பட்டுள்ள இடத் தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் உமது விடைகளுக்குப் போதுமானது என்பதையும் விரிவான விடைகள் அவசியியில்லை என்பதையும் கவனிக்க.

பகுதி B - கட்டுரை (பக்கங்கள் 9 - 16)

இப்பகுதி ஆறு வினாக்களைக் கொண்டுள்ளது. அவற்றில் நான்கு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமக்கு வழங்கப்படும் தூள்களை இதற்குப் பயன்படுத்துக.

- * இவ்வினாத்தாங்க்கென வழங்கப்பட்ட நேர முடிவில் பகுதி A மேலே இருக்கும்படியாக A, B ஆகிய இரண்டு பகுதிகளையும் ஒன்றாகச் சேர்த்துக் கட்டிய பின்னர் பரிட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் பகுதி B ஜ மாத்திரம் பரிட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரிசுகரின் உபயோகத்திற்கு மாத்திரம்

இரண்டாம் வினாத்தாங்கல்

பகுதி	வினா இல.	புள்ளிகள்
A	1	
	2	
	3	
	4	
B	5	
	6	
	7	
	8	
	9 (A)	
	9 (B)	
	10 (A)	
	10 (B)	
மொத்தம்	இலக்கத்தில்	
	எழுத்தில்	

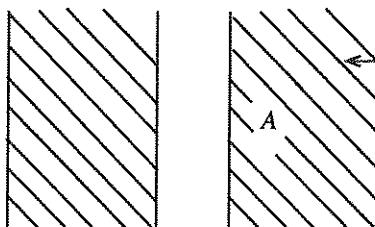
കുറിയിട്ടെങ്ങന്കണ്ണ്

வினாத்தாள்களைப் பரிசீலித்தவர் 1	
வினாத்தாள்களைப் பரிசீலித்தவர் 2	
புள்ளிகளைப் பரிசீலித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி A - அமைப்புக் கட்டுரை

எல்லா நாள்கு வினாக்களுக்கும் விடைகளை இத்தாளிலேயே எழுதுக.

(ஈர்ப்பினாலான ஆர்மூகல், $g = 10 \text{ m s}^{-2}$ எனக் கொள்க)


இப்பதிலே
ஏதையும்
எழுதல்
ஈகாது.

1. திரவமொன்றின் பரப்பிமுவையைத் துணிவதற்காகப் பாடசாலை ஆய்கூடமொன்றில் பயன்படுத்தப்படும் பிரசோதனை ஒழுங்கமைப்பொன்று உரு (1) இற் காட்டப்பட்டுள்ளது.

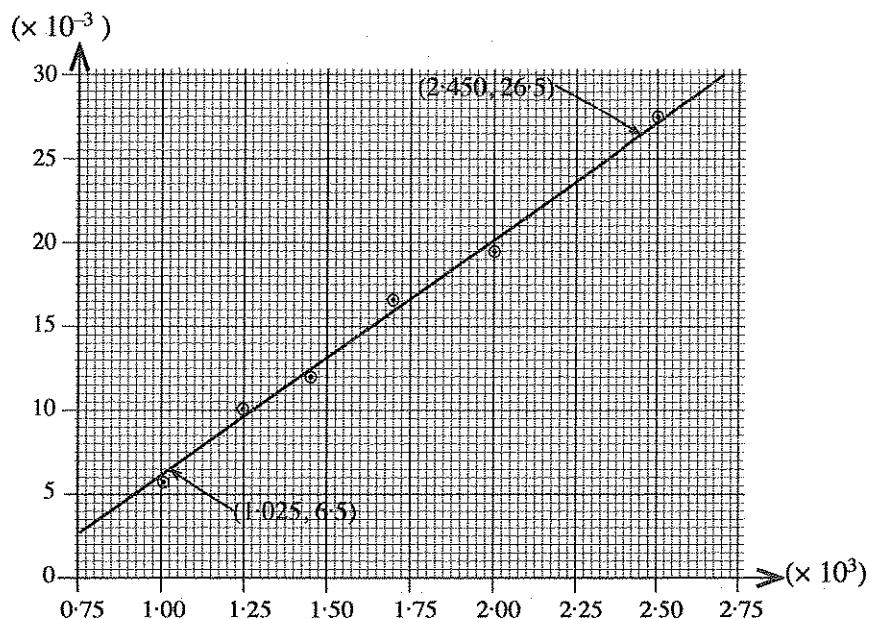
உரு (1)

(a) (i) மயிர்த்துளைக் குழாயின் அச்சு வழியே ஒரு நிலைக்குத்துக் குறுக்கு வெட்டின் உருப்பெருத்த தோற்றும் உருவில் திரவத்தின் பிறையுருவை மயிர்த்துளைக் குழாயினுள் வரைந்து, பரப்பிமுவை T ஜியும் திரவத்திற்கும் மயிர்த்துளைக் குழாயின் கண்ணாடி மேற் பரப் பிற் குழிடையே உள்ள தொடுகைக் கோணம் θ ஜியும் குறிக்க.

உரு (2)

(ii) மயிர்த்துளைக் குழாயில் உள்ள திரவ நிரலின் உயரம், மயிர்த்துளைக் குழாயின் உள்ளாரை, திரவத்தின் அடர்த்தி ஆகியன முறையே h, r, ρ எனின், $h\rho g$ இற்குரிய ஒரு கோவையை T, r, θ ஆகியவற்றின் சார்பிற் பெறுக.

.....
.....
.....
(iii) பயன்படுத்தப்படும் எடுகோளைத் தெளிவாக எழுதி, மேலே (ii) இற் பெற்ற சமன்பாட்டை $h = \frac{2T}{r\rho g}$ ஆகச் சருக்கலாமெனக் காட்டுக.


.....
.....
.....
(iv) தரப்பட்ட திரவமொன்றிற்காக மேலே (iii) இற் குறிப்பிட்ட எடுகோளைத் திருப்திப்படுத்துவதற்குப் பின்பற்ற வேண்டிய பிரசோதனை நடைமுறையைச் சரியான ஒழுங்குமுறையில் எழுதுக.

(v) உயரம் h ஜித் துணிவதற்குத் தேவையான வாசிப்புகளைப் பெறுவதற்கு முன்னர் உரு (1) இந் காட்டப்பட்டுள்ள பரிசோதனை ஒழுங்கமைப்பில் செய்ய வேண்டிய செப்பஞ் செய்கை யாது?

.....

.....

(b) வெவ்வேறு ஆரைகளைக் கொண்ட 6 மயிரத்துளைக் குழாய்களைப் பயன்படுத்தி நீரின் பரப்பிழுவையைத் துணிவதற்குப் பெறப்பட்ட பரிசோதனைத் தரவுகள் (SI அலகுகளில்) பின்வரும் வரைபின் மூலம் காட்டப்பட்டுள்ளன.

(i) மேலே (a) (iii) இல் உள்ள சமன்பாட்டைக் கருத்திற்கொண்டு, வரைபின் சாரா மாறி (x) ஜியும் சார் மாறி (y) ஜியும் இனங்கண்டு எழுதுக.

x :

y :

(ii) வரைபைப் பயன்படுத்தி நீரின் பரப்பிழுவையைத் துணிந்து விடையை SI அலகுகளுடன் எடுத்துரைக்க. (நீரின் அடர்த்தி 1000 kg m^{-3} ஆகும்.)

.....

.....

.....

.....

(iii) நீருக்குப் பதிலாகச் சவர்க்கார நீரைப் பயன்படுத்தியிருந்தால், மயிரத்துளை உயர்ச்சிக்கு யாது நிகழ்ந்திருக்கும்? விடையைச் சூருக்கமாக விளக்குக.


.....

.....

.....

2. சேளின் முறையினால் உலோகமொன்றின் வெப்பக் கடத்தாறைத் துணிவதற்குப் பயன்படுத்தப்படும் பிரசோதனை ஒழுங்கமைப்பின் பூரணமற்ற வரிப்படம் ஒன்று கீழே உள்ள உருவில் காட்டப்பட்டுள்ளது.

இப்பதிலே
ஏதையும்
ஏழுதல்
ஷாது

(a) நீராவிப் பிறப்பாக்கிக்குள்ளே P, Q ஆகிய குழாய்கள் செலுத்தப்பட்டுள்ளதன் நோக்கங்கள் யாவை?

P :

Q :

(b) செம்மையான பேறைப் பெறுவதற்குச் சேளின் ஆய்கருவியிடன் கொதிநீராவி வழங்கலையும் நீர் வழங்கலையும் ஏற்றுவாரு தொடுத்தல் அவசியமானதாகும். அதற்கேற்ப ஒவ்வொரு தொடுப்புக்களையும் இனங்கண்டு அதற்குரிய காரணங்களைக் கூறுக.

(i) கொதிநீராவி வழங்கல் (A அல்லது B) :

காரணம் : ..
.....

(ii) நீர் வழங்கல் (L அல்லது M) :

காரணம் : ..
.....

(c) இப்பிரசோதனைக்காக மேலும் தேவைப்படும் மூன்று அளவிட்டு உபகரணங்களை எழுதி, அவை ஒவ்வொன்றையும் பயன்படுத்தி இப்பிரசோதனையில் பெறப்படும் குறித்த அளவிட்டைச் சுருக்கமாகக் குறிப்பிடுக.

உபகரணம்	அளவிடு
(i)
(ii)
(iii)

(d) T_1, T_2 ஆகிய வெப்பமானிகளுக்கிடையே உள்ள இடைத்தூரம் 8.0 cm ஆகும். T_1, T_2 ஆகியவற்றின் மாறு வெப்பநிலை வாசிப்புகள் முறையே 73.8°C , 59.2°C எனின், வெப்பநிலைப் படித்திறனைக் கணிக்க.

(e) இவ்வெப்பநிலைப் படித்திறன் கோல் வழியே மாறுமா? விடையைச் சுருக்கமாக விளக்குக.

.....

.....

(f) வெப்ப உறுதிநிலையில் T_3 , T_4 ஆகிய வெப்பமானிகளின் வாசிப்புகளுக்கிடையே உள்ள வித்தியாசம் $9.5\text{ }^{\circ}\text{C}$ உம் நீரின் பாய்ச்சல் வீதம் நிமிடத்திற்கு 120 g உம் ஆகும். நீரினால் வெப்பம் உறிஞ்சப்படும் வீதத்தைக் கணிக்க. (நீரின் தன்வெப்பக் கொள்ளலு $4200\text{ J kg}^{-1}\text{ K}^{-1}$.)

.....

.....

(g) கோலின் குறுக்குவெட்டுப் பரப்பளவு 12.0 cm^2 எனின், உலோகத்தின் வெப்பக் கடத்தாறைக் கணித்து, விடையை SI அலகுகளுடன் எடுத்துரைக்க.

.....

.....

.....

(h) அரிதிற் கடத்தியோன்றின் வெப்பக் கடத்தாறைக் காண்பதற்காகச் சேளின் முறையைப் பயன்படுத்த முடியுமா? விடையைச் சுருக்கமாக விளக்குக.

.....

.....

3. கண்ணாடியின் முறிவுச் சுட்டியைத் துணிவதற்காக ஒரு நியமத் திருசியமானி, ஒரு கண்ணாடி அரியம், ஒர் ஒருநிற ஒளி முதல் ஆகியன் பயன்படுத்தப்படுகின்றன.

(a) அளவீடுகளைப் பெற ஆரம்பிப்பதற்கு முன்னர் திருசியமானியில் சில அவசியமான செப்பஞ்செய்கைகளைச் செய்தல் வேண்டும்.

(i) பார்வைத் துண்டில் செய்ய வேண்டிய செப்பஞ்செய்கை யாது?

.....

.....

(ii) தொலைகாட்டி ஒரு தூரப் பொருளுக்குத் திசைப்படுத்தப்பட்டு, அப்பொருளின் ஒரு தெளிவான விம்பம் குறுக்குக் கம்பிகளின் மீது உண்டாகும் வரைக்கும் தொலைகாட்டியானது செப்பஞ்செய்யப்படும். இச்செப்பஞ்செய்கையின் நோக்கம் யாது?

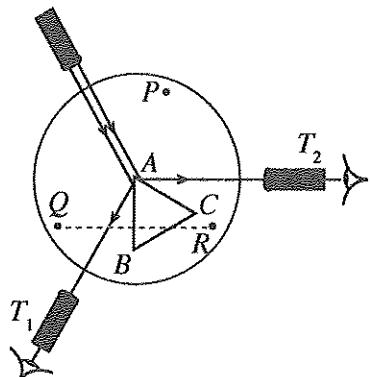
.....

.....

(iii) நேர்வரிசையாக்கியின் நீள் துவாரத்தில் செய்ய வேண்டிய செப்பஞ்செய்கை யாது?

.....

.....

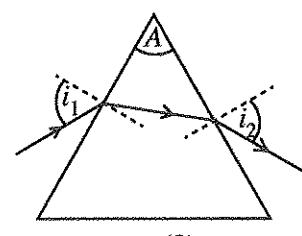
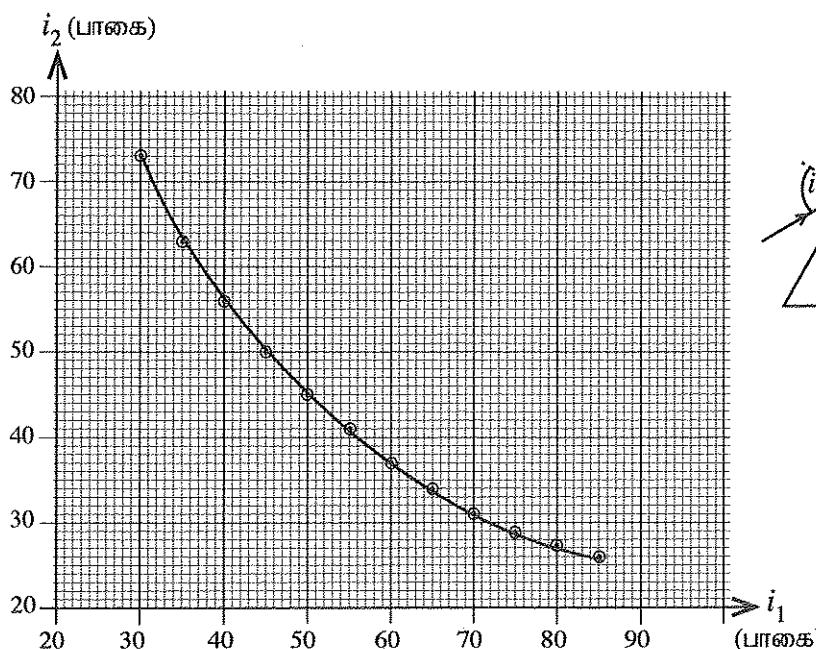

(iv) தொலைகாட்டி நேர்வரிசையாக்கியுடன் ஒரே நேர்கோட்டில் இருக்குமாறு கொண்டு வரப்படுகின்றது. பின்னர் நீள் துவாரத்தின் ஒரு கூர்மையான விம்பம் குறுக்குக் கம்பிகளின் மீது உண்டாகும் வரைக்கும் நேர்வரிசையாக்கி செப்பஞ்செய்யப்படும். இச்செப்பஞ்செய்கையின் நோக்கம் யாது?

.....

.....

(b) அறிய மேசையை மட்டமாக்குவதற்கு உரு (1) இற் காட்டப்பட்டுள்ளவாறு அறியம் வைக்கப்பட்டு, P, Q, R ஆகிய திருக்கள் செப்பஞ்செய்யப்படும்.

(i) தொலைகாட்டி T_1 நிலையில் உள்ளபோது நீள் துவாரத்தின் ஒரு சமச்சீர் விம்பத்தைக் குறுக்குக் கம் பிகளின் மீது பெறுவதற்குத் திருக்கு Q செப்பஞ்செய்யப்படும். தொலைகாட்டியை நிலை T_2 இற்குக் கொண்டு செல்லும்போது நீள் துவாரத்தின் ஒரு சமச்சீர் விம்பத்தைப் பெறுவதற்கு எந்தத் திருக்கைச் செப்பஞ்செய்தல் வேண்டும்?

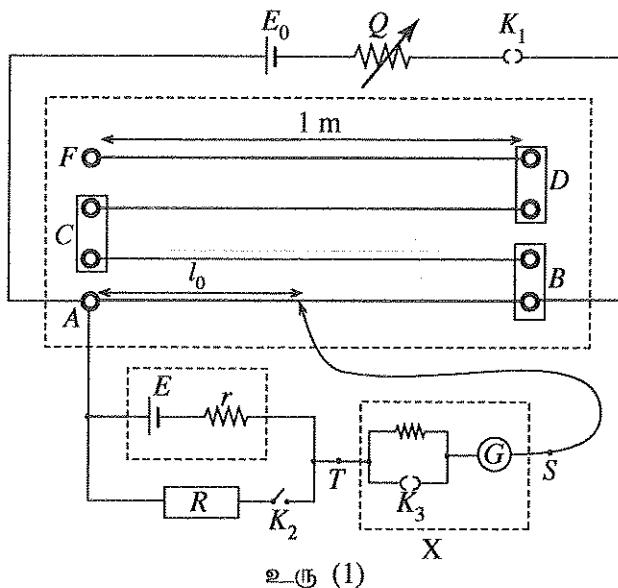
2(b) (1)

(ii) நிர்மட்டமொன்றைப் பயன்படுத்துவதன் மூலம் அரிய மேசையை மிக எளிதாக மட்டமாக்கலாமென மாணவன் ஒருவன் கூறினான். இக்கற்று சரியானதா? விடையைச் சுருக்கமாக விளக்குக.

(c) தொலைகாட்டி T_1, T_2 ஆகிய நிலைகளில் உள்ளபோது திருச்சியமானியின் வாசிப்புகள் முறையே $279^\circ 58'$ உம் $38^\circ 02'$ உம் ஆகும். தொலைகாட்டியை T_1 இலிருந்து T_2 இற்குக் கொண்டு செல்லும்போது அது பிரதான அளவிடையின் பூச்சியத்தைக் கடந்து சென்றது என்பதைக் கவனிக்க. அரியக் கோணம் A கூக் கணிக்க.

(d) தூப்பட்ட கண்ணாடி அரியத்தினால் ஒளிக் கதிரொன்றின் விலகற் கோணத்தைத் துணிவதற்கு மாணவன் ஒருவன் உரு (2) இற் காட்டப்பட்டுள்ளவாறு படுகோணத்தையும் வெளிப்படு கோணத்தையும் முறையே i_1, i_2 என அளவிட்டான். i_1 உடன் i_2 இன் மாற்றை வரைபு காட்டுகின்றது.

2-15 (2)


ଶ୍ରୀପତିର
ଅତ୍ୟନ୍ତାପ
ବିମୁଦ୍ରାନାମ
ଶ୍ରୀକାର

(i) விலக்க கோணம் d இற்குறிய ஒரு கோவையை அரியக் கோணம் A , கோணங்கள் i_1, i_2 ஆகியவற்றின் சார்பில் எழுதுக.

(ii) வரைபைப் பயன்படுத்தி இழிவு விலக்கற் கோணம் D ஜத் துணிக.

(iii) அரியம் ஆக்கப்பட்ட கண்ணாடியின் முறிவுச் சுட்டியைக் கணிக்க.

4. மின்னியக்க விசை (emf) $E (< E_0)$ ஜ் உடைய ஒரு தரப்பட்ட கலத்தின் அகத் தடை r ஜக் துணிவதற்குப் பயன்படுத்தத்தக்க 4 m நீளமுள்ள கம்பியைக் கொண்ட ஒர் அழுத்தமானியின் பரிசோதனை ஒழுங்கமைப்பு உரு (1) இந் காட்டப்பட்டுள்ளது.

(a) அளவீடுகளின் செம்மையைப் பாதிக்கும், அமுத்தமானிக் கம்பியோன்றில் இருக்கக்கூடிய இருப்புகளைக் குறிப்பிடுக.

(b) உரு (1) இற் காட்டப்பட்டுள்ள அழுத்தமானியைச் செப்பஞ்செய்யப்பட்டதுக்க வீச்கடைய ஒரு வோல்ந்துமானியாகப் பயன்படுத்த முடியுமா? விடைக்குக் காரணங்களைத் தருக.

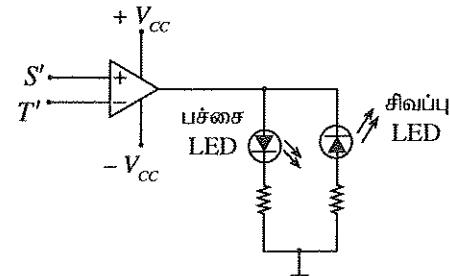
(c) மாணவன் ஒருவன் கல்வனோமானியினுடைக் கூட்டம் பாயாதபோதிலும் கூட அதில் ஒரு சிறிய தீற்பால் இருப்பதை அவதானித்தான். இக்கல்வனோமானியை இப்பரிசோதனைக்காகப் பயன்படுத்துகிற உகந்ததா? விடைக்குறிய காரணங்களைத் தருக.

இப்பதிப்பு
எதனையும்
எழுதுதல்
ஈக்காகு.

(d) ஆனி K_2 திறந்திருக்கும்போது அமுத்தமானிக் கம்பியின் சமநிலை நீளம் l_0 ஆகும். K_2 முடப்படும்போது சமநிலை நீளம் l ஆகும். தரப்பட்ட கலத்தின் அகத் தடை r இங்கான ஒரு கோவையை l, l_0, R ஆகியவற்றின் சார்பிற் பெறுக.

.....
.....
.....
.....

(e) தூர்ப்பட்ட அமுத்தமானியின் மூலம் உயர்ந்தப்பட்ச வழுவாக 1 mm ஜக் கொண்ட சமநிலை நீளங்களை அளக்க முடியும். $R = 8 \Omega$, $l_0 = 72.4 \text{ cm}$, $l = 50.1 \text{ cm}$ எனின், அகத் தடை r இற்குக் கிடைக்கத்தக்க உயர்ந்தப்பட்சப் பெறுமானத்தைக் கணிக்க.


.....

(f) ஒரு வரைபு முறையைப் பயன்படுத்தி அகத் தடை r ஜ் மேலும் செம்மையாகத் துணியலாம். அதற்காக ஒர் உகந்த வரைபை வரைவதற்கு R ஜ் ஒரு மாறுந் தடையாகக் கருதி (d) இற் பெற்ற சமன்பாட்டை மின் ஒழுங்குப்படுத்துக. வரைபின் சாரா மாறியையும் (x) சார் மாறியையும் (y) எழுதுக.

x :

y :

(g) உரு (1) இல் உள்ள குற்றின் பகுதி X ஜ உரு (2) இந் காட்டப்பட்டுள்ள குற்றினால் மாற்றிடு செய்வதன் மூலம் உரு (1) இல் காணப்படும் அழுத்தமானிச் குற்று மாற்றியமைக்கப்படலாம்.

2. (b) (2)

(i) மாற்றியமைக்கப்பட்ட சுற்றில் சமநிலைப் புள்ளியானது A இற்கும் B இற்குமிடையே உள்ளதெனக் கொள்க. வழக்கு சாவியை A இலும் B இலும் வைக்கும்போது ஒளிரும் ஒளி காலும் இருவாயி (LED) இன் நிறம் யாது?

A. இல் :

B இல் :

(ii) இம்மாற்றியமைக்கப்பட்ட கற்றைப் பயண்படுத்தி எவ்விதம் சமநிலைப் புள்ளியைக் காணலாம் என்பதைச் சருக்கமாக விளக்குக.

.....

Digitized by srujanika@gmail.com

(iii) சமநிலைப் புள்ளியைக் காண்பதில் உரு (1) இல் உள்ள சுற்றுடன் ஒப்பிடும்போது இம்மாற்றியமைக்க சுர்றின் இரு அனுகூலங்களைக் குறிப்பிடுக.

NEW
Department of Examinations, Sri Lanka

අධ්‍යාපන පොදු සහතික පත්‍ර (ලයක් පෙනු) විභාගය, 2019 අධ්‍යාපන කළුවිප් පොතුත් තුරාතුරුප පත්තිර (මූර් තුරුප පරිශේ, 2019 ඉකළුරු General Certificate of Education (Adv. Level) Examination, August 2019

ജ്ഞാതിക വിജ്ഞാനി പെണ്ടീക്കവിയല് Physics

III

പക്തി B - കട്ടുരെ

01 T II


நான்கு வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
(சர்ப்பினாலான ஆற்முடுகை $g = 10 \text{ m s}^{-2}$ எனக் கொள்க.)

5. (a) மின் வலுப் பிறப்பாக்கிகளில் பயப்பு வோல்ற்றளவின் மீறுறன் ஆனது காந்த முனைவுகளின் எண்ணிக்கை P இலும் பிறப்பாக்கியின் நிமிடத்திற்கான சமூற்சிகளின் எண்ணிக்கை N இலும் தங்கியுள்ளது. இம்மீறுறன் f ஆனது Hz இல் $f = \frac{P \times N}{120}$ இனால் தரப்படுகிறது.

இரு காந்த முனைவுகளைக் கொண்ட காவத்தக்க மின் பிறப்பாக்கியொன்று (portable generator) பொதுவாக நிமிடத்திற்கான சுழற்சிகளின் எண்ணிக்கை (rpm) 3000 இல் தொழிற்படுகிறது. பின்வருவனவற்றைக் காண்க.

(i) பிறப்பாக்கியினது பயப்பு வோல்ட்றூவிளின் மீட்ரன்
 (ii) பிறப்பாக்கியின் கழுற்சிக் கதி செக்கனிற்கு ஆரையன்களில் (rad s^{-1}) ($\pi = 3$ எனக் கொள்க)

(b) மாணவன் ஒருவன் மேலே (a) இந் குறிப்பிட்ட காவத்தக்க மின் பிறப்பாக்கியின் எஞ்சினை நீர்ப் பாய்ச்சலின் மூலம் கழற்றப்படத்தக்க கழலியென்றினால் (turbine) மாற்றீடு செய்து ஒரு நீர்வலுப் பொறியத்தின் மாதிரியிருவொன்றை வடிவமைத்துள்ளான். மாறு நீர்ப் பாய்ச்சல் ஒன்றின்போது கூட பயப்பட வோல்றாவின் மீறிறன் மின் நுகர்வுடன் மாறுவதை அவன் அவதானித்தான். பயப்பின் மீறிறன் மாற்றலைக் கட்டுப்படுத்துவதற்காகச் சூலிக்கு வழங்கும் நீர்ப் பாய்ச்சலைச் செப்பஞ்செய்வதற்கு அவன் ஒரு கட்டுப்படுத்தும் கருவியை (device) அமைத்துள்ளான். ஊசிவாய் வால்வொன்றுடன் இணைக்கப்பட்ட இக்கட்டுப்படுத்தும் கருவியின் திட்ட வரிப்படம் உடு (1) இந் காட்டப்பட்டுள்ளது.

இக்கருவியின் எல்லா மூட்டுகளும் உராய்வின்றிச் சுயாதீனமாக இயங்கத்தக்கனவெனக் கொள்க. சுழற்சியின்போது விசையாள் குண்டுகள் கிடையாக இயங்குவதால் காப்புறையானது சமலும் அச்சாணி வழியே மேலும் கீழம் இயங்குமாறு செய்யப்படுகின்றது. இக்கருவியானது சமலும் அச்சாணிப்பற்றிச் சமச்சீரானது. சுழலியின் சுழற்சிக் கதியின் மூலம் ஊசிவாய் வால்வு (throttle valve) திறப்பதும் மூடுவதும் தன்னியக்கமாகக் கட்டுப்படுத்தப்படுகின்றது. விசையாள் குண்டுகள் தவிரக் கருவியின் ஏனைய எல்லாப் பகுதிகளும் தினிவெற்றனவெனக் கொள்ளலாம்.

(i) விசையாள் குண்டு தொடுக்கப்பட்ட ஒவ்வொரு புயமும் இழுவையின் கீழ் உள்ளதெனக் கொண்டு விசையாள் குண்டொன்றின் சுயாதீன் பொருள் விசை வரிப்படத்தை வரைக. விசையாள் குண்டின் திணிவை m எனக் கருதுக.

(ii) ஒவ்வொரு விசையாள் குண்டினதும் கூறுகிற அச்சாணி பற்றிய கோண வேகம் ω rad s⁻¹ எனின், மேற் புயத்திலும் கீழ்ப் புயத்திலும் உள்ள இழுவைகள் முறையே $\frac{ml}{2} \left(\omega^2 + \frac{g}{h} \right)$, $\frac{ml}{2} \left(\omega^2 - \frac{g}{h} \right)$ இனால் தரப்படுகின்றனவெனக் காட்டுக. இங்கு l ஆனது ஒவ்வொரு புயத்தினதும் நீளமும் h ஆனது கீழ்ப் பிடியிலிருந்து ஒவ்வொரு விசையாள் குண்டினதும் உயரமும் ஆகும்.

(iii) பயப்பு வோல்ப்ரைவலின் மீடிறன் 50 Hz ஆகவுள்ளபோது h இன் பெறுமானம் 30 cm ஆகும். உறுப்பு $\frac{g}{h}$ இனது இழுவைக்கான பங்களிப்பைப் பூர்க்கணிக்கலாமெனக் காட்டுக.

(iv) $m = 1 \text{ kg}$, $l = 50 \text{ cm}$ எனின், மேற் புயமொன்றில் உள்ள இழுவையைக் கணிக்க.

(v) பயப்பு வோல்ப்ரைவலின் மீடிறன் 50 Hz ஆகவுள்ளபோது வில்லின் சுருக்கம் 20 cm ஆகும். இவ்வில்லின் வில் யாறிலியைத் துணிக.

(c) பயப்பு வோல்ப்ரைவலின் மீடிறன் 50 Hz ஆகவுள்ளபோது பாய்ச்சலின் 50% ஜத் தடுக்குமாறு ஊசிவாய் வால்வு அமைக்கப்பட்டுள்ளது. அதாவது, வால்வு உரு (2) இற் காட்டப்பட்டுள்ளவாறு பாய்ச்சற் குழாயின் அச்சுடன் 45° கோணத்தை ஆக்குகின்றது. ஊசிவாய் வால்லின் மூடுகையானது குழாயின் அச்சுடன் ஆக்கும் கோணத்திற்கு விகிதசமமெனக் கொள்க.

பயப்பு வோல்ப்ரைவலின் மீடிறன் நுகர்வில் தங்கியுள்ளது. நுகர்வு அதிகரிக்கும்போது பயப்பு மீடிறன் குறையும் அதே வேளை அதன் மறுதலையும் நிகழும்.

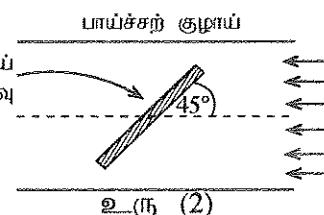
(i) வாடவமைப்பிற்கேற்பப் பயப்பு வோல்ப்ரைவல் மீடிறன் 25 Hz ஆகும்போது ஊசிவாய் வால்வு முற்றாகத் திறக்கும். மீடிறன்கள் 25 Hz ஜ விடக் குறைவடைந்த போதிலும் கூட வால்வு முற்றாகத் திறந்தே இருக்கும். ஊசிவாய் வால்வு முற்றாகத் திறக்கும் கணத்தில் பின்வருவனவற்றைத் துணிக ($\frac{g}{h}$ இனது பங்களிப்பைப் பூர்க்கணிக்க).

(1) மேற் புயமொன்றின் இழுவை

(2) வில்லின் சுருக்கம்

(ii) பயப்பு வோல்ப்ரைவலின் மீடிறன் அதிகரிக்கும்போது பாய்ச்சல் வீதத்தைக் குறைப்பதற்கு ஊசிவாய் வால்வு படிப்படியாக மூடுகின்றது. பாய்ச்சலின் 75% தடைப்பட வேண்டுமோயின் பயப்பு வோல்ப்ரைவலின் மீடிறன் யாதாக இருக்க வேண்டும்?

6. (a) (i) ஒர் அதிரும் ஈர்த்த இழையினால் உண்டாக்கப்படும் அடிப்படை வகையினதும் முதல் இரு மேற்பொருளிகளினதும் நின்ற அலைக் கோலங்களை மூன்று வெவ்வேறு வரிப்படங்களில் வரைக. வரிப்படங்களில் கணுக்களை 'N' எனவும் முரண்கணுக்களை 'A' எனவும் குறிக்க. (முனைத் திருத்தங்களைப் பூர்க்கணிக்க.)


(ii) இழையின் இழுவை T ஆகவும் N ஆகவும் ஒரலகு நீளத்தின் திணிவு m ஆகவும் இருப்பின், n ஆம் இசைச் சுரத்தின் மீடிறன் f_n இற்கான கோவையொன்றை n, T, l, m ஆகியவற்றின் சார்பிற் பெறுக.

(iii) ஒரு தரப்பட்ட இழைக்கு இசை மீடிறன்களை மாற்றுத்தக்க ஒரு விதங்களைக் குறிப்பிடுக.

(b) உரு (1) இற் காட்டப்பட்டுள்ள யாழ் (Harp) போன்ற இசைக் கருவி ஒன்று வெவ்வேறு நீளங்களைக் கொண்ட ஒத்த 7 ஈர்த்த கம்பிகளைக் கொண்டுள்ளது.

நீளம் l_1 ஜ உடைய மிக நீண்ட கம்பி அடிப்படை மீடிறன் 260 Hz ஆகவுள்ள சங்கீத சுரம் 'ஸ' (C) ஜ உண்டாக்குகின்றது. எல்லாச் சங்கீதச் சுரங்களையும் உண்டாக்கும் கம்பிகளின் நீளங்கள் l_1 இன் பின்னமாக அட்டவணையில் தரப்பட்டுள்ளன.

சங்கீதச் சுரங்கள்	ஸ C ஸ	ஸ D ரி	ஸ E க	ஸ F ம	ஸ G ப	ஸ A த	ஸ B நி
$\frac{l}{l_1}$	1.00	0.89	0.79	0.70	0.67	0.59	0.53

உரு (2)

உரு (1)

(i) எல்லாக் கம்பிகளும் ஒரே இழுவையின் கீழ் இருக்குமெனின், சங்கீதச் சுரங்கள் "ம" (F), "நி" (B) என்பவற்றின் அடிப்படை மீடிறன்களைக் கணிக்க.

(ii) சரியான ஒரு சங்கீதச் சுரத்தைப் பெறுவதற்குக் கம்பியின் இழுவையைச் செப்பஞ்செய்வதன் மூலம் மீடிறன் நூண்மையாக இசைவாக்கப்படலாம். மீடிறனை 1% இனால் மாற்றுவதற்கு உரிய கம்பியின் இழுவையை என்ன சதவீதத்தினால் செப்பஞ்செய்ய வேண்டும்?

(c) மாணவன் ஒருவன் பல்வேறு நீளங்களைக் கொண்ட ஒடுங்கிய PVC குழாய்களைப் பயன்படுத்தி மேலே அட்டவணையிற் குறிப்பிட்ட சங்கீதச் சுரங்களை உண்டாக்குவதற்குப் பாங்குழாய்களின் (panpipe) தொகுதியொன்றை உரு (2) இல் உள்ளவாறு வடிவமைத்து உருவாக்குகின்றான். எல்லாக் குழாய்களினதும் கீழ் முனைகள் தக்கைகளினால் அடைக்கப்பட்டுள்ளன.

(i) ஒரு முனை மூடப்பட்டுள்ள L நீளமுள்ள ஒரு குழாயினால் உண்டாக்கப்படும் அடிப்படை வகையினதும் முதல் இரு மேற்கொள்கினினதும் நின்ற அலை வடிவத்தை மூன்று வெவ்வேறு வரிப்படங்களில் வரைக. வரிப்படங்களில் கணுக்களை 'N' எனவும் முரண்கணுக்களை 'A' எனவும் குறிக்க (முனைத் திருத்தங்களைப் புறக்கணிக்க).

(ii) சங்கீதச் சுரங்கள் 'ஸ' (C) ஜூம் 'நி' (B) ஜூம் உண்டாக்குவதற்குத் தேவையான குழாய்களின் நீளங்களை மீ இற் கணிக்க. அன்ற வெப்ப நிலையில் ஒலியின் வேகம் 340 m s^{-1} எனக் கொள்க.

(iii) மிகவும் நீளமான குழாயானது 260 Hz இற்குப் பதிலாக 255 Hz மீறிறனை உண்டாக்குவதாகக் கண்டியிப்பட்டது. 260 Hz மீறிறனைப் பெறுவதற்குத் தக்கை நகர்த்தப்பட வேண்டிய தூரம் யாது?

(iv) தக்கையொன்று குழாயிலிருந்து முற்றாகக் கழன்று விழுமாயின், அக்குழாயினால் உண்டாக்கப்படும் அடிப்படை மீறிறனுக்கு யாது நடைபெறும்? உமது விடையைப் பொருத்தமான படமொன்றுடன் நியாயப்படுத்துக.

7. பொருளொன்று ஒரு பிகக்கு ஊடகத்தினாடாக விழும்போது அது மீற்தல் விசைக்கும் ஈருகை விசைக்கும் உட்படுகின்றது. மீற்தல் விசை பொருளை மேல்நோக்கித் தள்ளும் அதே வேளை ஈருகை விசை ஊடகம் சார்பாகப் பொருளின் இயக்கத்திற்கு எதிராகத் தொழிற்படுகின்றது.

(a) ஒரு திரவ ஊடகத்தினாடாக விழும் திண்மக் கோளப் பொருளொன்றிற்கு ஈருகை விசையை ஸ்ரோக்சின் விதியினால் எடுத்துரைக்கலாம்.

(i) ஒரு திண்மக் கோளத்திற்கு ஸ்ரோக்சின் குத்திரத்தை எழுதி, அதன் பரமானங்களைப் பெயரிடுக.

(ii) ஸ்ரோக்சின் குத்திரத்தைப் பெறுகையில் பயன்படுத்தப்படும் இரு எடுகோள்களை எழுதுக.

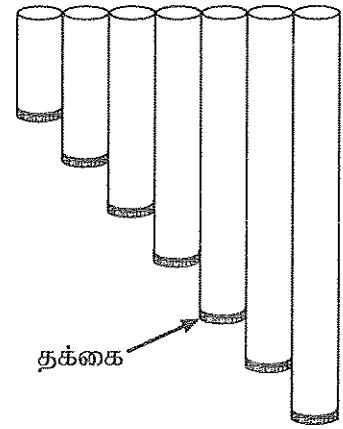
(b) ஒரு பிகக்குப் பாய்மத்தில் படிப்படியாக எழுகின்ற வளிக் குமிழி ஒன்றைக் கருதுக. வளிக் குமிழி மேல்நோக்கிச் சென்று பாய்மத்தின் மேற்பரப்பை அடைவதற்கு எடுக்கும் நேரத்தைத் துணிவதற்கு ஸ்ரோக்சின் விதியைப் பயன்படுத்தலாம். உயரத்துடன் ஏற்படும் அழுக்க மாற்றத்தின் விளைவைப் புறக்கணித்து, தரப்பட்ட நேரம் t இல் ஒரு பிகக்கு ஊடகத்தில் வளிக் குமிழி ஒன்றின் கண்ணிலை வேகம் $V(t)$ ஆனது

$$V(t) = V_T \left(1 - e^{-\frac{t}{\tau}}\right) \text{ இனால் தரப்படலாம்; இங்கு } V_T, \tau \text{ ஆகியன முறையே வளிக் குமிழியின் இயக்கத்தின் முடிவு வேகமும் தளர்வு நேரமும் (relaxation time) ஆகும்.$$

(i) ஒரு பிகக்கு ஊடகத்தில் வளிக் குமிழி ஒன்றின் இயக்கத்தின் தளர்வு நேரம் 4 ms எனின், ஒப்பிலிருந்து அதன் கண்ணிலை வேகம், V_T இன் 50% ஜ் அடைவதற்கு எடுக்கும் நேரத்தைக் கணிக்க ($\ln 0.5 = -0.7$ எனக் கொள்க).

(ii) அவ்வளிக் குமிழியின் கண்ணிலை வேகம், V_T இன் 50% இலிருந்து 90% இற்கு அதிகரிப்பதற்கு எடுக்கும் நேரத்தைக் கணிக்க ($\ln 0.1 = -2.3$ எனக் கொள்க).

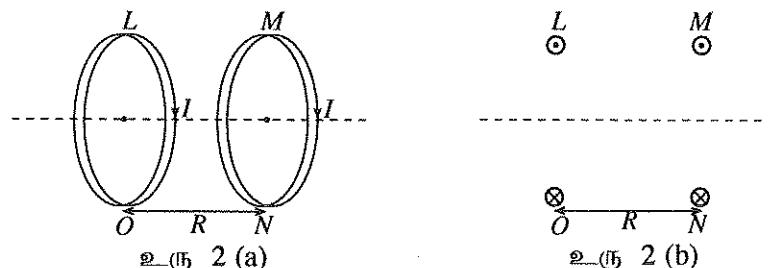
(iii) மேலே (b) (i) இலும் (b) (ii) இலும் பெற்றுக்கொண்ட விடைகளைக் கருத்திற்கொண்டு வளிக் குமிழியின் கண்ணிலை வேகத்தின் நேரத்துடன் மாற்றலை வரைப்படுத்துக. V_T ஜ் வரைபில் தெளிவாகக் குறித்துக் காட்டுக.


(c) 10 m உயரம் வரை எண்ணேய் நிரப்பப்பட்ட ஓர் எண்ணேய்த் தாங்கியின் அடியிலிருந்து எழும் ஒரு வளிக் குமிழியைக் கருதுக.

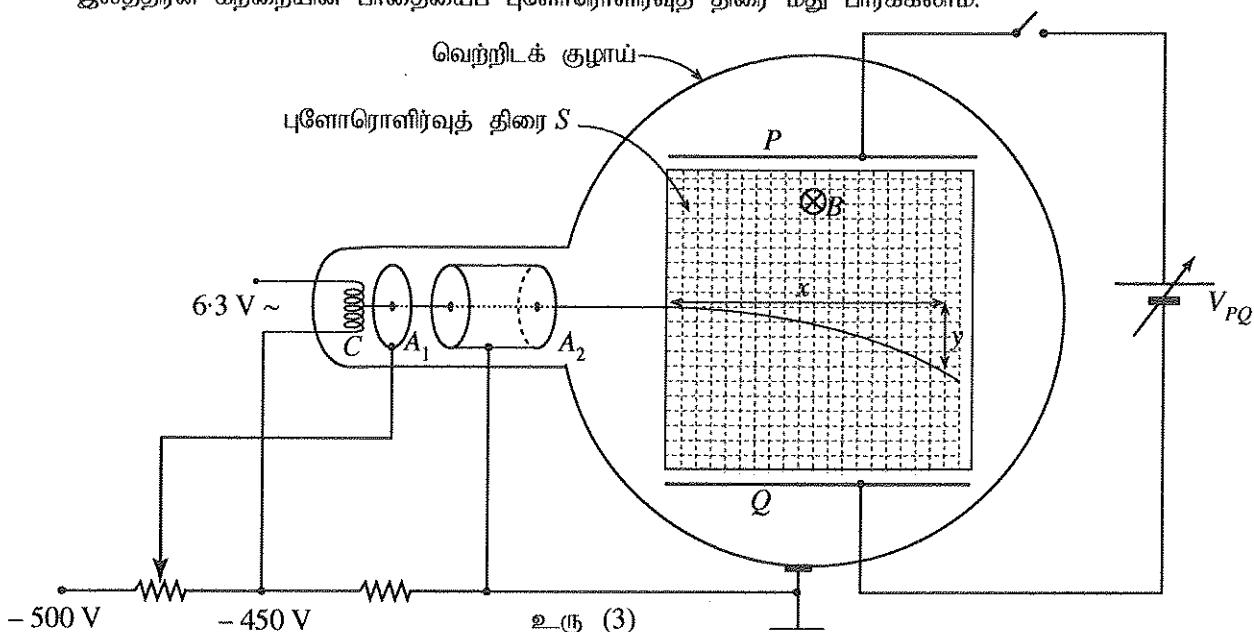
(i) வளிக் குமிழி மீது தாக்கும் விளையுள் விசைக்குரிய ஒரு கோவையை $\eta, \rho_o, \rho_a, a, u$ ஆகியவற்றின் சார்பிற் பெறுக; இங்கு η ஆனது எண்ணேயின் பிகக்குமைக் குணகமும் ρ_o ஆனது எண்ணேயின் அப்ரத்தியும் ρ_a ஆனது வளியின் அப்ரத்தியும் a ஆனது வளிக் குமிழியின் ஆரையும் u ஆனது வளிக் குமிழியின் வேகமும் ஆகும்.

(ii) $\eta = 7.5 \times 10^{-2} \text{ Pa s}$, $\rho_o = 900 \text{ kg m}^{-3}$, $\rho_a = 1.225 \text{ kg m}^{-3}$, வளிக் குமிழியின் சராசரி ஆரை $a = 0.1 \text{ mm}$ எனத் தரப்பட்டுள்ளது. வளிக் குமிழியின் நிறையையும் உயரத்துடன் அழுக்கத்தின் மாற்றல் காரணமான விளைவையும் புறக்கணித்து, வளிக் குமிழியின் முடிவு வேகத்தைக் கணிக்க.

(iii) வளிக் குமிழியின் உள் அழுக்கம் 100.33 kPa ஆகவும் வளிமண்டல அழுக்கம் 100 kPa ஆகவும் எண்ணேயின் மேற்பரப்பிழுவை $2.0 \times 10^{-2} \text{ N m}^{-1}$ ஆகவும் இருப்பின், எண்ணேயின் மேற்பரப்புக்கு மட்டுமட்டாகக் கீழே வளிக் குமிழியின் ஆரையைக் கணிக்க.


(iv) உயரத்துடன் வளிக் குமிழியின் ஆரையினது வேறுபாட்டைக் கருத்திற் கொண்டு, அதனது கண்ணிலை வேகத்தினது நேரத்தினுடன் மாற்றலைப் புந்முடியாக வரைக.

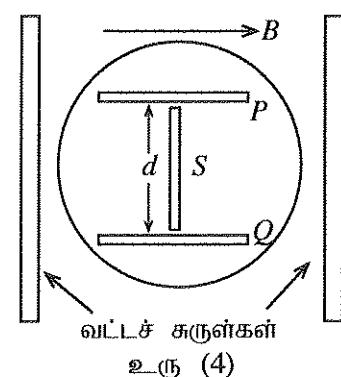
8. (a) (i) மிகச் சிறிய நீளம் Δl ஜ உடைய மெல்லிய கம்பியோன்றினாடாக ஒர் ஓட்டம் I பாய்கிறது. இக்கம்பியிலிருந்து ஒரு செங்குத்துத் தூரம் d இல் உள்ள புள்ளியோன்றில் காந்தப் பாய அடர்த்தி ΔB ஆனது $\frac{\mu_0 I \Delta l}{4\pi d^2}$ ஆல் தரப்படும் எனக் காட்டுக.


(ii) ஆரை R ஜயம் N முறைக்குகளையும் உடைய ஒரு தட்டையான வட்டச் சுருளினாடாக உரு (1) இற் காட்டப்பட்டவாறு ஓட்டம் I பாய்கிறது. சுருளின் மையத்தில் காந்தப் பாய அடர்த்தியின் பருமன் B இற்கான கோவையொன்றைப் பெறுக.

(iii) அத்தகைய இரு சுருள்கள் உரு 2 (a) இற் காட்டப்பட்டுள்ளவாறு வேறாக்கம் R உடன் ஓர்ச்சாக வைக்கப்பட்டுள்ளன. ஓட்டம் I ஜ இரு சுருள்களும் ஒரே திசையிற் கொண்டு செல்கின்றன. பொது அச்சினாடாக உள்ள சுருள்களின் ஒரு நிலைக்குத்துக் குறுக்குவெட்டு உரு 2 (b) இற் காட்டப்பட்டுள்ளது.

உரு 2 (b) ஜ விடைத்தானிற் பிரதிசெய்து, இரு சுருள்கள் காரணமாக உண்டாகும் காந்தப் புலத்தை எடுத்துக் காட்டுவதற்குக் காந்தப் புலக் கோடுகளை வரைந்து காட்டுக.

(b) ஒர் இலத்திரன் ஏற்றத்திற்கும் தினிவுக்குமிடையே உள்ள விகிதம் $\left(\frac{e}{m_e}\right)$ ஜ துணிவுதற்கு உரு (3) இற் காட்டப்பட்டுள்ள கருவியைப் பயன்படுத்தலாம். வெற்றிடக் குழாயில் ஒர் இழைக் கதோட்டு C , மின்வாய்கள் A_1, A_2 , நெய்யரிக் கோடுகள் உள்ள ஒரு நிலைக்குத்துப் புளோரோஸிரவுத் திரை S ஆகியன உள்ளன. இலத்திரன் கற்றையின் பாதையைப் புளோரோஸிரவுத் திரை மீது பார்க்கலாம்.



(i) இலத்திரன் கற்றையின் செறிவைக் கட்டுப்படுத்தல் மின்வாய் A_1 இன் தொழிலாகும். மின்வாய் A_2 இன் தொழில் யாது?

(ii) மின்வாய் A_1 இற்கு ஒரு மறை வோல்ட்றனவு ($-V$) ஜப் பிரயோகிக்கும்போது மின்வாய் A_2 இனாடாகச் செல்லும் ஒர் இலத்திரனின் கதிக்குரிய ஒரு கோவையைப் பெறுக. (இலத்திரனொன்றின் ஏற்றம் $-e$, இலத்திரனொன்றின் தினிவு m_e ஆகும்.)

(iii) குழாயின் கோளப் பகுதி உரு (4) இற் காட்டப்பட்டுள்ளவாறு ஒரே ஓட்டத்தைக் கொண்டு செல்லும் இரு வட்டத் தட்டைச் சுருள்களுக்கிடையே வைக்கப்படுகின்றது. இதன் மூலம் ஒரு சீரான காந்தப் புலம் B ஆனது திரை S இற்குச் செங்குத்தாகப் பிரயோகிக்கப்படுகிறது. இதன் மூலம் இலத்திரன்கள் ஒரு வட்டப் பாதையில் நகருமாறு செய்யப்படுகின்றன. இலத்திரன் கற்றையின்

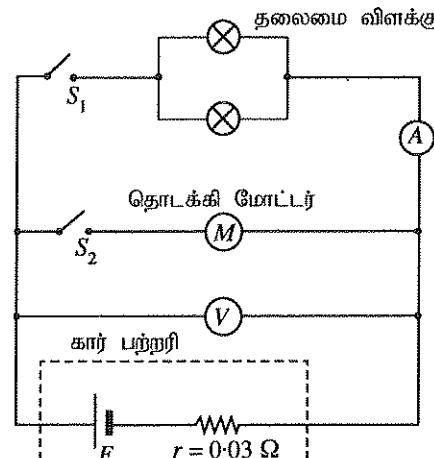
பாதையின் ஆரை r எனின், இலத்திரனின் $\left(\frac{e}{m_e}\right)$ விகிதத்திற்குரிய ஒரு கோவையைப் பெறுக.

(c) உரு (3) இற் காட்டப்பட்டுள்ளவாறு P, Q ஆகிய இரு சமாந்தர உலோகத் தகடுகளுக்கிடையே ஒரு நேரோட்ட வோல்ட்ட்ரன்வைப் பிரயோகிக்கலாம். P, Q ஆகிய தகடுகள் உரு (4) இற் காட்டப்பட்டுள்ளவாறு தூரம் d இணால் வேறுபடுத்தப்பட்டுள்ளன. காந்தப் புலம் B பிரயோகிக்கப்பட்டுள்ள அதே வேளை இலத்திரன் கற்றையில் திறம்பல் ஏற்படாத வரைக்கும் தகடுகளுக்கிடையே அழுத்த வித்தியாசம் V_{PQ} செப்பஞ்செய்யப்படலாம். இச்செயல்முறை இலத்திரன்களின் கதியைத் துணிவதற்குரிய ஒரு மாற்று முறையாகப் பயன்படுத்தப்படலாம்.

- மேற்குறித்த செப்பஞ்செய்கையைச் செய்த பின்னர் P, Q ஆகிய தகடுகளுக்கிடையே உள்ள ஒரு இலத்திரனின் மீது தாக்கும் மின் விசையையும் காந்த விசையையும் வரைந்து காட்டுக.
- இலத்திரன்களின் கதிக்குரிய ஒரு கோவையை d, B, V_{PQ} ஆகியவற்றின் சார்பிற் பெறுக.
- $B = 1 \text{ mT}$ ஆகவும் $V_{PQ} = 0$ ஆகவும் இருக்கும்போது இலத்திரன்களின் பாதையின் ஆரை 6 cm ஆகும். $V_{PQ} = 840 \text{ V}$ ஆக இருக்கும்போது இலத்திரன் கற்றையில் திறம்பல் இல்லை. P, Q ஆகிய தகடுகளுக்கிடையே வேறாக்கம் 8 cm ஆகும்.

 - இலத்திரனான்றின் கதியையும்
 - இலத்திரன் ஏற்றத்திற்கும் திணிவுக்குமிடையே உள்ள விகிதம் $\left(\frac{e}{m_e}\right)$ ஜூம் கணிக்க.

9. பகுதி (A) இற்கு அல்லது பகுதி (B) இற்கு மாத்திரம் விடை எழுதுக.


பகுதி (A)

- ஒரு மின் முதலின் மின்னியக்க விசை (emf) ஆனது அம்முதலினால் ஒரலகு ஏற்றத்தின் மீது செய்யப்படும் வேலையாக வரையறுக்கப்படும். தரப்பட்ட மின்னியக்க விசையின் வரைவிலக்கணத்தைப் பயன்படுத்தி
 - மின்னியக்க விசையின் அலகுகளைத் துணிக.
 - முதலொன்றினால் பிறப்பிக்கப்படும் வலுவிற்குரிய ஒரு கோவையை அதன் மின்னியக்க விசை E , அதனுடைன் ஒட்டம் I ஆகியவற்றின் சார்பிற் பெறுக.
- மின்னியக்க விசை E ஜூம் அகத் தடை r ஜூம் உடைய ஒரு முதல் தடை R ஜூ உடைய புறத் தடையில் ஒன்றுடன் தொடுக்கப்பட்டுள்ளது. நேரம் t இற் கற்றில் விரயமாகும் மொத்தச் சக்திக்குரிய ஒரு கோவையை E, r, R, t ஆகியவற்றின் சார்பிற் பெறுக.

- உரு (1) இன் கற்றிற் காட்டப்பட்டுள்ளவாறு ஒரு மோட்டர்க் காரின் தொடக்கி மோட்டரூக்கும் (starter motor) தலைமை விளக்குகளுக்கும் வலுவை வழங்கும் ஒரு மின்னிரசாயன பற்றந்தியைக் கருதுக. ஒவ்வொரு தலைமை விளக்கினதும் வீதம் கணித்த வலு (rated power) 60 W ஆகும். பற்றந்தியினது அகத் தடை 0.03 Ω ஆகும். அம்பியர்மானி ஒர் இலட்சிய அம்பியர்மானியாகத் தொழிற்படுகின்றதெனக் கருதுக.

மோட்டர்க் காரானது தொடக்கப்படாமல் (S_2 திறந்துள்ளது) தலைமை விளக்குகளை மாத்திரம் ஒளிரச்செய்யும்போது (S_1 மூடப்படும்) வோல்ட்டுமானி 12.0 V பெறுமானமொன்றைக் காட்டுகின்றது.

- அம்பியர்மானியின் வாசிப்பு யாது?
- தலைமை விளக்கொன்றின் தடை யாது?
- பற்றந்தியின் மின்னியக்க விசையைக் கணிக்க.

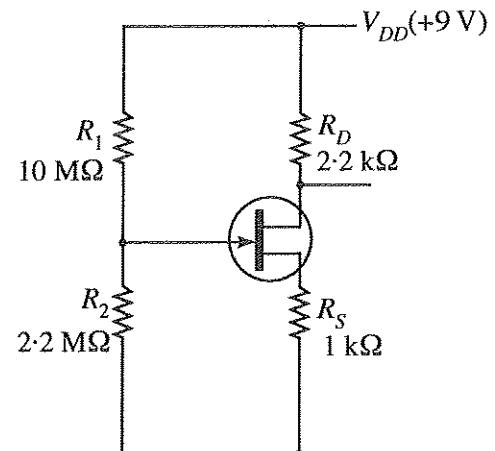
உரு (1)

- தலைமை விளக்குகள் ஒளிர்ந்து கொண்டும் தொடக்கி மோட்டரைத் தொடக்கியவுடன் (S_2 ஜூ முடியவுடன்) அம்பியர்மானி 8.0 A பெறுமானமொன்றைக் காட்டுகின்றது. இந்நிலையில்
 - தொடக்கி மோட்டரினுடைன் ஒட்டம்
 - தொடக்கி மோட்டரின் தடை என்பவற்றைக் கணிக்க.
- தலைமை விளக்குகள் ஒளிர்ந்து கொண்டும் தொடக்கி மோட்டரின் ஆமேச்சர் கழன்று கொண்டும் இருக்கும்போது தொடக்கி மோட்டரினுடைன் மின்னோட்டம் 34.2 A ஆகவும் வோல்ட்டுமானியின் வாசிப்பு 11.0 V ஆகவும் காணப்பட்டது. இந்நிலையில் தொடக்கி மோட்டரின்
 - பின் மின்னியக்க விசையையும்
 - திறனையையும் கணிக்க.
- மோட்டரின் பின் மின்னியக்க விசை E_b அதனுடைன் பாயும் ஒட்டத்துடன் மாறும் விதத்தைப் பருமட்டாக வரைக.

(g) இரவொன்றில் தலைமை விளக்குகளை அணைத்து விடுவதற்குச் சார்தி மறந்தமையால், பற்றி கணிசமான அளவிற்கு மின் இறக்கமடைந்திருந்தது. இதன் விளைவாக பற்றியின் மின்னியக்க விசை 10.8 V ஆகக் குறைந்து அதன் அகத் தடை 0.24Ω ஆக அதிகரித்தது. பற்றியில் ஏற்பட்ட மின் இறக்கம் காரணமாகத் தொடக்கி மோட்டினூடாகப் பாயும் ஒட்டம் அதனைச் சமூலச் செய்வதற்குப் போதியதன்று. இந்நிலையில், தொடக்கி மோட்டினூடான் ஒட்டத்தைக் காண்க.

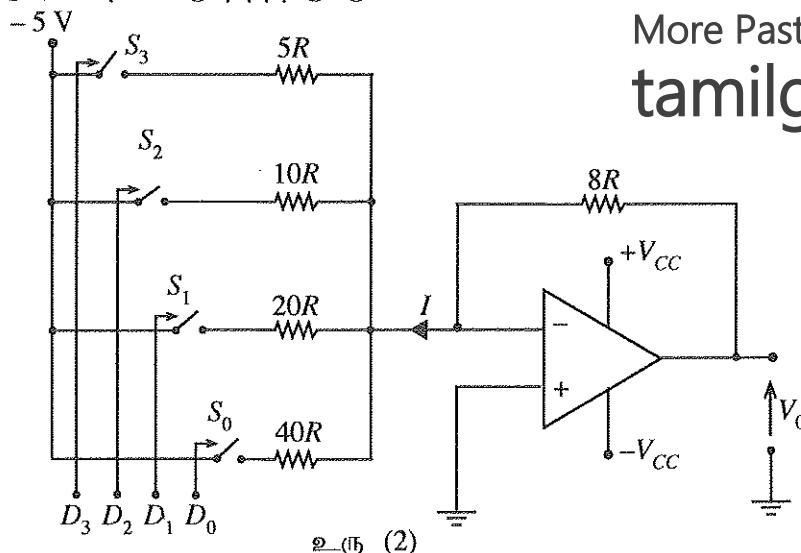
(h) மேலே (g) இல் குறிப்பிட்ட சந்தர்ப்பத்தில் சார்தி மின்னியக்க விசை 12.3 V ஜூம் அகத் தடை 0.02Ω ஜூம் உடைய வேற்றாரு புற பற்றியைப் பயன்படுத்தி மோட்டர்க் காரைத் தொடக்குகின்றார் (jump start). இவ்வாறு தொடக்குவதற்குப் புற பற்றியானது மின் இறங்கிய பற்றியிடன் ஒவ்வொன்றினதும் தடை 0.015Ω ஆகவுள்ள இரு மின் வடங்கள் (jumpers cables) மூலம் இணைக்கப்பட்டு மோட்டர்க் கார் தொடக்கப்படுகிறது.

(i) இவ்வாறு காரைத் தொடக்குகையில், புற பற்றியானது இறங்கிய பற்றியிடன் இணைக்கப்படும் விதத்தைச் சுற்று வரிப்படமொன்றின் மூலம் வரைந்து காட்டுக.


(ii) எஞ்சினைத் தொடக்கும்போது தொடக்கி மோட்டினூடாகப் பாயும் உயர்ந்தபடச் சூட்டத்தைக் கணிக்க.

பகுதி (B)

(a) (i) பல விளைவுத் திரான்சிற்றுகள் (FET) ஏன் ஒருமுனைவச் சாதனங்கள் (unipolar devices) என அழைக்கப்படுகின்றன? FET இன் தொழிற்பாட்டிற்குப் பங்களிப்புச் செய்யும் ஏற்றுக் காவிகள் யாவை?


(ii) FET கள் வோல்றுளவால் கட்டுப்படுத்தப்படும் (voltage controlled) சாதனங்கள் எனவும் அழைக்கப்படுவது ஏன் எனக் குறிப்பிடுக.

(iii) உரு (1) இற் காட்டப்பட்டுள்ள கற்றுக்கு $V_D = 5\text{ V}$ எனக் கொண்டு வடிகால் ஒட்டம் (drain current) I_D , படலை முதல் (Gate-Source) அழுத்தம் V_{GS} ஆகியவற்றைக் கணிக்க.

உரு (1)

(b) உரு (2) இல் உள்ள செயற்பாட்டு விரியலாக்கிச் சுற்றில் ஒவ்வொரு மின்பொறிமுறை ஆளி S_i ($i=0,1,2,3$) உம் ஒரு மின் சைகை D_i ($i=0,1,2,3$) ஜூப் பிரயோகிப்பதன் மூலம் தொழிற்படுத்தப்படுகின்றது. D_i இன் பெறுமானம் 'High'(5V) அல்லது 'Low'(0V) ஆக இருக்கலாம். D_i இன் பெறுமானம் 'High' ஆக இருக்கும்போது உரிய ஆளி S_i முடப்படும்; அன்றில் அது திறந்திருக்கும்.

More Past Papers at
tamilguru.lk

(i) D_2 'High' ஆக இருக்கும்போது தடையில் $10R$ இனூடான் ஒட்டத்தை R சார்பாகக் காண்க.

(ii) ஒரு வோல்றுளவுத் தொகுதி (5V, 0V, 5V, 5V) முறையே S_3, S_2, S_1, S_0 ஆகிய ஆளிகளைத் தொழிற்படுத்துவதற்கு ஒரே வேளையில் பிரயோகிக்கப்படுமெனின், உரு (2) இற் காட்டப்பட்டுள்ள ஒட்டம் I ஜூப் R இன் சார்பிற் கணிக்க.

(iii) ஒரு வோல்றுளவுத் தொகுதி (5V, 5V, 5V, 5V) முறையே S_3, S_2, S_1, S_0 ஆகிய ஆளிகளைத் தொழிற்படுத்துவதற்கு ஒரே வேளையில் பிரயோகிக்கப்படும் பயப்பு வோல்றுளவு V_0 ஜூக் கணிக்க.

(c) பணத்தின் மூலம் தொழிற்படுத்தப்படும் 'சிற்றுண்டி வழங்கி' (Snack dispenser) இயந்திரம் ஒன்று பின்வரும் நிபந்தனைகளின் கீழ் ஒரு 'மாரி' அல்லது 'சொக்களேற்றுக் கிறீம்' பிள்கட் பைக்கற்றை வழங்குகின்றது.

- சரியான பணத் தொகையைச் செலுத்துதல் (I)
- 'மாரி' (M) ஜி அல்லது 'சொக்களேற்றுக் கிறீம்' (C) ஜத் தெரிந்தெடுத்தல்
- 'மாரி' தேர்ந்தெடுக்கப்பட்டால் இயந்திரத்தினுள் 'மாரி இருத்தல்' (X)
- 'சொக்களேற்றுக் கிறீம்' தேர்ந்தெடுக்கப்பட்டால் இயந்திரத்தினுள் 'சொக்களேற்றுக் கிறீம் இருத்தல்' (Y)

(i) ஒரு பிள்கட் பைக்கற்று பெறப்படத்தக்க நிபந்தனைகளுக்குத் தருக்கக் கோவையோன்றைப் பெறுக.

(ii) தருக்கப் படலைகளைப் பயன்படுத்தி இதனை எவ்வாறு செயற்படுத்தலாம் எனக் காட்டுக.

10. பகுதி (A) இற்கு அல்லது பகுதி (B) இற்கு மாத்திரம் விடை எழுதுக.

பகுதி (A)

(a) (i) போயிலின் விதியையும் சாள்சின் விதியையும் எடுத்துரைக்க.

(ii) மேற்குறித்த விதிகளைப் பயன்படுத்தி இலட்சிய வாயுச் சமன்பாட்டைப் பெறுக.

(b) அறை வெப்பநிலை T_R இல் உள்ள கனவளவு V ஜூம் தொடக்க அழுக்கம் P_0 ஜூம் உடைய காற்றுக் குறைந்துள்ள ஒரு தயர் வால்வொன்றினாடாக நெருக்கப்பட்ட நெதரசன் (N_2) வாயுத் தாங்கியோன்றுடன் இணைக்கப்பட்டுள்ளது. தொடக்கத்தில் தயரானது N_2 வாயுவை மட்டுமே கொண்டிருந்தது. அத்தயரில் N_2 வாயுவை நிரப்பிய பின் அதன் இறுதி அழுக்கம் P ஆகவும் அதில் உள்ள N_2 வாயுவின் மொத்த மூல்களின் எண்ணிக்கை n ஆகவும் மாறின. தயரின் கனவளவில் மாற்றும் இல்லையெனக் கொண்டு,

(i) தயரில் உள்ள N_2 வாயுவானது இலட்சிய வாயுவொன்றாக நடந்துகொள்கின்றதெனக் கொண்டு,

$$\text{தயரினுள் பம்பப்பட்ட } N_2 \text{ வாயு மூல்களின் எண்ணிக்கை } n \left(1 - \frac{P_0}{P} \right) \text{ எனக் காட்டுக.}$$

(ii) தயரினை N_2 வாயுவைக் கொண்டு நிரப்புவதற்குச் செய்யப்பட்ட வேலைக்கான ஒரு கோவையைப் பெறுக.

(iii) N_2 வாயுவைப் பம்பும் செயன்முறை சேறவில்லாததெனக் கொண்டு, தயரில் உள்ள N_2 வாயுவின் வெப்பநிலையில் உள்ள மாற்றும் $\frac{2}{5} \left(1 - \frac{P_0}{P} \right) T_R$ எனக் காட்டுக. ஒர் இலட்சிய வாயுவின் அகச் சக்தியில் உள்ள மாற்றும் $\Delta U = n C_V \Delta T$ இனால் தரப்படும்; இங்கு C_V ஆனது மாறாக் கனவளவில் உள்ள மூல்ர் வெப்பக் கொள்ளளவும் ΔT ஆனது வெப்பநிலையில் உள்ள மாற்றமும் ஆகும். மாறாக் கனவளவில் சுருணு இலட்சிய வாயுவொன்றின் மூல்ர் வெப்பக் கொள்ளளவு $\frac{5R}{2}$ ஆகும்; இங்கு R ஆனது அகில வாயு மாறிலியாகும்.

(iv) வெப்பநிலையில் ஏற்படும் இம்மாற்றமானது, அழுக்கத்தைத் தற்காலிகமாக ஒர் உயர் பெறுமானத்திற்கு அதிகரிக்கச் செய்யும். அழுக்கத்தில் ஏற்படும் இம்மாற்றம் $\frac{2}{5} (P - P_0)$ எனக் காட்டுக.

(c) மானி அழுக்கம் (gauge pressure) என்பது வளிமண்டல அழுக்கம் சார்பாக அளக்கப்படும் அழுக்கமாகும். தயர்களில் மானி அழுக்கம் வழக்கமாக psi (pound per square inch) அலகுகளில் தரப்படுகிறது. ($1 \text{ atm} \approx 100 \text{ kPa}$ உம் $1 \text{ psi} \approx 7 \text{ kPa}$ உம் ஆகும்). அறை வெப்பநிலையில் (27°C) காற்று குறைந்த 20 psi அழுக்கத்தில் உள்ள தயர் 30 psi அழுக்கத்தை அடையும் வரைக்கும் அதில் மேலும் N_2 வாயு நிரப்பப்பட்டது.

(i) தயரில் உள்ள N_2 வாயுவின் வெப்பநிலையில் ஏற்பட்ட மாற்றத்தைக் கணிக்க.

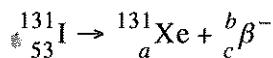
(ii) அவ்வெப்பநிலையின் மாற்றம் காரணமாகத் தயரிலுள்ள உயர்ந்தப்பட்ச அழுக்கத்தைக் கணிக்க.

(iii) காற்றுக் குறைந்துள்ள ஒரு தயரிற்கு N_2 வாயுவை மேலும் நிரப்பும்போது அழுக்கத்தில் ஏற்படும் இத்தற்காலிக அதிகரிப்பைப் பொதுவாக அவதானிக்க முடிவதில்லை. இதற்கான இரு காரணங்களைத் தருக.

பகுதி (B)

பின்வரும் பந்தியை வாசித்து விளாக்கங்களுக்கு விடை எழுதுக.

கதிர்ப்பைக் காலுவதன் மூலம் ஒர் உறுதியில் கரு உறுதியான ஒரு கருவாக மாறும் தன்னிச்சையான தேய்வச் செயன்முறையானது கதிர்த்தொழிற்பாடு ஆகும். தேய்வ வீதமானது அக்கணத்தில் உள்ள கதிர்த் தொழிற்பாட்டு அனுக்களின் எண்ணிக்கைக்கு நேர் விகிதசமமாக இருக்கின்றபோதிலும் வெளிப் பெளதிக் நிலைமைகளைச் சாராததாகும்.


தைரோயிட்டுப் (Thyroid) புற்றுநோய் உள்ள நோயாளிகளுக்குச் சிகிச்சையளிப்பதற்காகக் கரு மருத்துவத்தில் கதிர்த்தொழிற்பாட்டு அயன் ^{131}I பயன்படுத்தப்படுகின்றது. ^{131}I இன் அரை ஆயுட்காலம் 8 நாட்களாகும். அது தொடக்கத்தில் β^- துணிக்கையையும் பின்னர் γ போட்டனையும் காலுவதன் மூலம் உறுதியான ^{131}Xe ஆகத் தேய்கின்றது. இந்த β^- இன் உயர்ந்தப்பட்ச இழைய ஊடுருவல் நீளம் 2 mm ஆகும்.

பொதுவாக ^{131}I ஆனது சோடியம் அயடைட்டாக (Na^{131}I) கப்சியூல் (capsule) வடிவில் நோயாளிகளுக்கு வழங்கப்படுகின்றது. அது வழங்கப்பட்டதும் குருதியோட்டத்தினால் உறிஞ்சப்பட்டுத் தைரோயிட்டுச் சுரப்பியில் செறிவடையும். ^{131}I இலிருந்து காலப்படும் கதிர்ப்பானது தைரோயிட்டுச் சுரப்பியில் உள்ள புற்றுநோய்க் கலங்களில் பெரும்பாலானவற்றை அழிக்கும்.

நோயாளி ஒரு சாத்தியமான கதிர்ப்பு முதலாக மாறுகின்றமையால் குழலில் இருப்பவர்களுக்குக் கதிர்ப்புப் படுவதை இழிவளவாக்குவதற்கு முற்காப்பு நடவடிக்கைகள் மேற்கொள்ளப்பட வேண்டும். நோயாளியினால் காலப்படும் கதிர்ப்பின் அளவானது வழங்கப்பட்ட அறம்ப மாதிரி அளவின் கதிர்த் தொழிற்பாட்டிற்கு விகிதசமமாகும். மருத்துவத் துறையில் கதிர்த் தொழிற்பாட்டுக்காகப் பயன்படுத்தப்படும் SI அல்லது பொது அலகு கியூறி (Ci) ஆகும். ஒரு Ci ஆனது ஒரு செக்கனில் நிகழும் 37×10^9 பிரிந்தழிகைகளுக்குச் சமமாகும்.

உடலில் உள்ள ஒரு கதிர்த் தொழிற்பாட்டுக்குத் திரவியம் கதிர்த் தொழிற்பாட்டுத் தேய்வினால் மாத்திரமல்லாமல் உயிரியல் அகற்றவினாலும் குறைகின்றது. இவ்வகற்றல் வெறுமனே ஒர் உயிரியற் செயன்முறையாக இருக்கும் அதே வேளை தேய்வு மாறிலி λ_b இனால் எடுத்துக்காட்டப்படும் ஒர் அடுக்குக்குறி (exponential) மாற்றலைப் பின்பற்றுகின்றது. ஆகவே, கதிர்த் தொழிற்பாட்டுத் தேய்வு, உயிரியல் அகற்றல் ஆகிய இரண்டினதும் விளைவாகப் பலிதத் (பயன்படு) தேய்வு மாறிலி λ_e ஆனது $\lambda_e = \lambda_b + \lambda_p$ ஆல் தரப்படும்; இங்கு λ_p ஆனது பெளதிக்க் கதிர்த் தொழிற்பாட்டுத் தேய்வு மாறிலியாகும். கதிர்ப்புப் பாதுகாப்பு நடவடிக்கைகளுக்குப் பயன்படுத்தப்படும் பலித (பயன்படு) அரை ஆயுட்காலம் பலிதத் தேய்வு மாறிலியிலிருந்து கணிக்கப்படும்.

(a) (i) β^- , γ காலங்களுக்கிடையே உள்ள இரு வேறுபாடுகளைக் குறிப்பிடுக.
(ii) a, b, c ஆகியவற்றுக்குப் பதிலாகச் சரியான எண்களை இட்டுப் பின்வரும் தேய்வுச் சமன்பாட்டினை மறுபடியும் எழுதுக.

(b) 100 mCi தொழிற்பாடு உள்ள புதிய Na^{131}I மாதிரி ஒன்று ஒரு மருத்துவமனைக்குக் கிடைக்கப்பெறுகிறது. அறை வெப்பநிலையில் இருக்கும் ஒர் ஈயக் கொள்கலத்தில் இம்மாதிரி சேமித்து வைக்கப்படுகின்றது.

(i) கதிர்த் தொழிற்பாட்டிற்குப் பயன்படுத்தப்படும் SI அலகு யாது?
(ii) தேய்வு மாறிலி λ இற்குறிய ஒரு கோவையை அரை ஆயுட்காலம் T இன் சார்பில் எழுதுக.
(iii) நான்கு நாட்களுக்குப் பின்னர் மேற்குறித்த மாதிரியின் கதிர்த் தொழிற்பாட்டைக் கணித்து விடையை SI அலகுகளில் எடுத்துரைக்க. ($\ln 2 = 0.7$ எனவும் $e^{-0.35} = 0.7$ எனவும் கொள்க.)
(iv) இதிலிருந்து, கதிர்த் தொழிற்பாட்டில் ஏற்பட்ட மாற்றத்தைச் சதவீதத்தில் எடுத்துரைக்க.
(v) Na^{131}I மாதிரியை அறை வெப்பநிலைக்குப் பதிலாக 0°C இற் சேமித்து வைப்பதன் மூலம் கதிர்த் தொழிற்பாட்டைக் குறைக்க முடியுமா? விடையை விளக்குக.

(c) 100 mCi தொழிற்பாடு உள்ள Na^{131}I மாதிரியின் சிறிய அளவு ஒன்று ஒரு தைரோயிட்டு நோயாளிக்கு வழங்கப்படுகின்றது.

(i) இத்தகைய ஒரு நோயாளியைக் கையாளும்போது எவ்விதக் காலல் தொடர்பாகக் கதிர்ப்புப் பாதுகாப்பு நடவடிக்கைகளை மேற்கொள்ள வேண்டும்? விடையை விளக்குக.
(ii) தைரோயிட்டுச் சுரப்பியில் ${}_{53}^{131}\text{I}$ இன் பலித அரை ஆயுட்காலம் T_e ஆனது $\frac{1}{T_e} = \frac{1}{T_p} + \frac{1}{T_b}$ இனால் தரப்படலாமெனக் காட்டுக; இங்கு T_p, T_b ஆகியன முறையே கதிர்த் தொழிற்பாட்டுக்குறிய அரை ஆயுட்காலமும் உயிரியல் அகற்றலுக்கான அரை ஆயுட்காலமும் ஆகும்.
(iii) தைரோயிட்டுச் சுரப்பியில் ${}_{53}^{131}\text{I}$ இன் உயிரியல் அரை ஆயுட்காலம் 24 நாட்களெனின், ${}_{53}^{131}\text{I}$ இன் பலித அரை ஆயுட்காலத்தைக் (நாட்களில்) கணிக்க.
(iv) ${}_{53}^{131}\text{I}$ ஜி வழங்கி 4 நாட்களுக்குப் பின்னர் கதிர்த் தொழிற்பாட்டில் ஏற்பட்ட சதவீத மாற்றத்தைக் கணிக்க. ($e^{-0.46} = 0.63$ என எடுக்க.)
(v) கதிர்ப்புப் பாதுகாப்பு ஒழுங்குவிதிகளுக்கேற்ப ${}_{53}^{131}\text{I}$ வழங்கப்பட்ட நோயாளிகளைக் கதிர்த் தொழிற்பாடு 50 mCi இற்குக் கீழே அல்லது சமமாக இருக்கும்போது மருத்துவமனையிலிருந்து வெளியே செல்வதற்கு அனுமதிக்கலாம். இந்த ஒழுங்குவிதி பின்பற்றப்பட்டால், மேற்குறித்த ${}_{53}^{131}\text{I}$ வழங்கப்பட்ட நோயாளியை மருத்துவமனையிலிருந்து வெளியே அனுப்புவதற்கு முன்னர் எவ்வளவு காலத்திற்குத் தனிமைப்படுத்தி வைக்க வேண்டும்?