

ශ්‍රී ලංකා රිජය දෙපාර්තමේන්තුව
Department of Examinations, Sri Lanka
රිජය මාත්‍රිකා මාත්‍රිකාවලාව
Department of Examinations, Sri Lanka
Department of Examinations, Sri Lanka

අධ්‍යාපන පොදු සහතික පත්‍ර (රුස්ස පෙළ) විභාගය, 2022 (2023) කළමනීය පොත්තු තරාතුරු ප්‍රතිඵලි (ඉයර් තරු)ප පරිශේ, 2022 (2023) General Certificate of Education (Adv. Level) Examination, 2022 (2023)

கால்பாதனை மாணிக்கம்	I
இணைந்த கணிதம்	I
Combined Mathematics	I

10 T I

烏鵲 B

* முந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. (a) $0 < |p| < 1$ எனக் கொள்வோம். சம்பாடு $p^2x^2 - 2x + 1 = 0$ இற்கு வேறுவேறான மெய்ம் மூலங்கள் இருக்கின்றனவெனக் காட்டுக்.
 இம்மூலங்கள் $\alpha, \beta (> \alpha)$ எனக் கொள்வோம். α, β ஆகிய இரண்டும் நேரெனக் காட்டுக்.
 $(\alpha - 1)(\beta - 1)$ ஆகியவற்றை p இற் கண்டு, $\alpha < 1$ எனவும் $\beta > 1$ எனவும் உய்த்தறிக்.
 $\sqrt{\beta} - \sqrt{\alpha} = \frac{1}{|p|} \sqrt{2(1-|p|)}$ எனக் காட்டுக்.
 $\sqrt{\beta} + \sqrt{\alpha} = \frac{1}{|p|} \sqrt{2(1+|p|)}$ எந்த தரப்பட்டுள்ளது.
 $|\sqrt{\alpha} - 1|, |\sqrt{\beta} - 1|$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சம்பாடு
 $|p|x^2 - \sqrt{2(1-|p|)}x + \sqrt{2(1+|p|)} - |p| - 1 = 0$ எனக் காட்டுக்.

(b) $p(x) = 2x^3 + ax^2 + bx - 4$ எனக் கொள்வோம்; இங்கு $a, b \in \mathbb{R}$ ஆகும். $(x+2)$ ஆகாது $p(x), p'(x)$ ஆகிய இரண்டுள்ளதும் ஒரு காரணியென்ற தரப்பட்டுள்ளது; இங்கு $p'(x)$ ஆகாது x ஜக் குறித்து $p(x)$ இன் பெறுதியாகும். a, b ஆகியவற்றின் பெறுமானங்களைக் காண்க. a, b ஆகியவற்றின் இப்பெறுமானங்களுக்கு $p(x) - 3p'(x)$ ஜ முற்றாகக் காரணிப்படுத்துக்.

12. (a) ஒவ்வொரு மாணவனுக்கும் குறைந்தபட்சம் ஒரு பழிமலூம் கிடைக்கும்தாக, அறு மாம்பழங்களையும் நான்கு தோட்டபழங்களையும் எட்டு மாணவர்களிடையே, பசிர்ந்து கொள்ள வேண்டியிருள்ளது.
 (i) அறு மாணவர்களுக்கு ஒரு பழம் வீதமும் எஞ்சியுள்ள இரு மாணவர்களில் ஒரு மாணவனுக்கு இரு மாம்பழங்களும் மற்றைய மாணவனுக்கு இரு தோட்டபழங்களும்
 (ii) ஏழு மாணவர்களுக்கு ஒரு பழம் வீதமும் மற்றைய மாணவனுக்கு மூன்று மாம்பழங்களும்
 (iii) ஏழு மாணவர்களுக்கு ஒரு பழம் வீதமும் மற்றைய மாணவனுக்கு மூன்று பழங்களும் கிடைக்கும் வெவ்வேறு விதங்களின் எண்ணிக்கையைக் காண்க.

(b) $r \in \mathbb{Z}^+$ இற்கு $U_r = \frac{4(2r+7)}{(2r+1)(2r+3)(2r+5)}$ எனக் கொள்வோம். அத்துடன் $r \in \mathbb{Z}^+$ இந்கு
 $f(r) = \frac{A}{(2r+1)} + \frac{B}{(2r+3)}$ எனவும் கொள்வோம்; இங்கு A, B ஆகியன் மெய்ம் மாறிலிகளாகும். $r \in \mathbb{Z}^+$
 இற்கு $U_r = f(r) - f(r+1)$ ஆக இருக்கும்தாக A, B ஆகியவற்றின் பெறுமானங்களைத் துணிக், இதிலிருந்து அல்லது வேறு விதமாக, $n \in \mathbb{Z}^+$ இற்கு $\sum_{r=1}^n U_r = \frac{4}{5} - \frac{3}{2n+3} + \frac{1}{2n+5}$ எனக் காட்டுக்.
 முடிவில் தொட்டி $\sum_{r=1}^{\infty} U_r$ ஒருங்குகின்றது என்பதை உய்த்தறிந்து, அதன் கூட்டுத்தொகையைக் காண்க
 இதிலிருந்து, $\sum_{r=1}^{\infty} (U_r + kU_{r+1}) = 1$ ஆக இருக்கும்தாக மெய்ம் மாறிலி k இன் பெறுமானத்தைக் கண்க

13. (a) $A = \begin{pmatrix} a & -2 \\ 1 & a+2 \end{pmatrix}$ எனக் கொள்வோம்; எல்லா $a \in \mathbb{R}$ இற்கும் A^{-1} இருக்கின்றதெனக் காட்டுக.

$P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 3 & 2 \\ -1 & 7 & 4 \end{pmatrix}, R = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ எழிய நாயங்கள் $A = PQ^T + R$ எனக் கொட்டுக்காத்தாக உள்ளன. $a = 1$ எனக் காட்டுக.

a இன் இப்பெறுமானத்திற்கு A^{-1} ஜ எழுதி. இதிலிருந்து, $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \end{pmatrix}$ எடுக் கொட்டுக்காத்தாக x, y ஆகியவற்றின் பெறுமானங்களைக் காண்க.

(b) $z, w \in \mathbb{C}$ எனக் கொள்வோம். $z\bar{z} = |z|^2$ எனக் காட்டி, இதிலிருந்து, $|z+w|^2 = |z|^2 + 2\operatorname{Re}(z\bar{w}) + |w|^2$ எனக் காட்டுக.

$|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$ என்பதை உய்த்தரிந்து. ஒக்கு வரிப்படத்தில் $z, w, 0$ ஆகியவற்றை வகைக்குறிக்கும் புள்ளிகள் ஒருக்கோட்டில் இல்லாதபோது இதற்கு ஒரு கேத்திரகணித விளக்கந்தைத் தருக.

(c) $z = -1 + \sqrt{3}i$ எனக் கொள்வோம். z ஜ வடிவம் $r(\cos\theta + i\sin\theta)$ இல் எடுத்துரைக்க; இங்கு $r > 0$ உம் $\frac{\pi}{2} < \theta < \pi$ உம் ஆகும்.

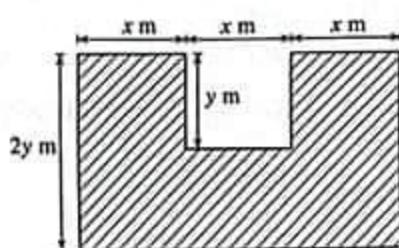
$n \in \mathbb{Z}^+$ இற்கு $z^n = a_n + ib_n$ எனக் கொள்வோம்; இங்கு $a_n, b_n \in \mathbb{R}$ ஆகும். $m, n \in \mathbb{Z}^+$ இற்க $\operatorname{Re}(z^m \cdot z^n)$ ஜ a_m, a_n, b_m, b_n ஆகியவற்றில் எழுதுக.

z^{m+n} ஜக்கார்த்தி, த மோப்ஸின் தேர்த்தைப்பயன்படுத்தி, $m, n \in \mathbb{Z}^+$ இங்கு $a_m a_n - b_m b_n = 2^{m+n} \cos(m+n) \frac{2\pi}{3}$ எனக் காட்டுக.

14. (a) $x \neq -2$ இற்கு $f(x) = \frac{2x+3}{(x+2)^2}$ எனக் கொள்வோம்.

$f(x)$ இன் பெறுதி $f'(x)$ ஆனது $x \neq -2$ இற்கு $f'(x) = \frac{-2(x+1)}{(x+2)^3}$ இனால் தரப்படுகின்றதெனக் காட்டுக. இதிலிருந்து, $f(x)$ அதிகரிக்கும் ஆயிடையையும் $f(x)$ குறையும் ஆயிடைக்களையும் காண்க.

அத்துடன், $f(x)$ இன் திரும்புப் புள்ளியின் ஆள்கூருகளையும் காண்க.


$x \neq -2$ இற்கு $f''(x) = \frac{2(2x+1)}{(x+2)^4}$ எனத் தரப்பட்டுள்ளது. $y = f(x)$ இன் வரைபின் விபத்திப் புள்ளியின் ஆள்கூருகளைக் காண்க.

அனுத்தோகுகள், நிறும்புப் புள்ளி, விபத்திப் புள்ளி ஆகியவற்றைக் காட்டி, $y = f(x)$ இன் வரைபைப் பரும்படியாக வரைக.

$[k, \infty)$ மது $f(x)$ ஒன்றுக்கொண்றாக இருக்கும் k இன் மிகச் சிறிய பெறுமானத்தை எடுத்துரைக்க.

(b) படத்திற்கு காட்டப்பட்ட நிறும்புப் பிரதோசத்தின் பரப்பளவு 45 m^2 ஆகும். இது நீளம் $3x \text{ m}$ ஜபும் அகலம் $2y \text{ m}$ ஜபும் உடைய ஒரு செல்வகந்திலிருந்து நீளம் $x \text{ m}$ ஜபும் அகலம் $y \text{ m}$ ஜபும் உடைய ஒரு செல்வகந்தை அகற்றுவதனால் பெறப்படுவது. நிறும்புப் பிரதோசத்தின் குறைவு $L \text{ m}$ ஆனது $x > 0$ இற்கு $L = 6x + \frac{54}{x}$ இனால் தரப்படும் எனக் காட்டுக.

L குறைந்துபடுமாக இருக்கத்தக்காக x இன் பெறுமானத்தைக் காண்க.

15. (a) எல்லா $x \in \mathbb{R}$ இற்கும் $x^2 + x + 2 = A(x^2 + x + 1) + (Bx + C)(x + 1)$ ஆக இருக்கந்தக்கதாக A, B, C ஆகிய மாறிலிகளின் பெறுமானங்களைக் காண்க.

இதிலிருந்து, $\frac{x^2 + x + 2}{(x^2 + x + 1)(x + 1)}$ ஐப் பகுதிப் பின்னங்களாக எழுதி, $\int \frac{x^2 + x + 2}{(x^2 + x + 1)(x + 1)} dx$ ஐக் காண்க.

$$(b) 1 + \sin 2x = 2 \cos^2 \left(\frac{\pi}{4} - x \right) \text{ எனக் காட்டி, இதிலிருந்து, } \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin 2x} dx = 1 \text{ எனக் காட்டுக.}$$

$$(c) I = \int_0^{\frac{\pi}{2}} \frac{x^2 \cos 2x}{(1 + \sin 2x)^2} dx \text{ எனக் கொள்வோம். பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி, } I = -\frac{\pi^2}{8} + J \\ \text{எனக் காட்டுக; இங்கு } J = \int_0^{\frac{\pi}{2}} \frac{x}{1 + \sin 2x} dx.$$

தொடர்பு $\int_0^a f(x) dx = \int_0^a f(a-x) dx$ ஐயும் (b) இல் உள்ள பேறையும் பயன்படுத்தி J இன் பெறுமானத்தைக் கண்டு, $I = \frac{\pi}{8}(2 - \pi)$ எனக் காட்டுக.

16. $P \equiv (x_0, y_0)$ எனவும் l ஆனது $ax + by + c = 0$ இனால் தரப்படும் நேர்கோடு எனவும் கொள்வோம். P இலிருந்து l இற்கு உள்ள செங்குத்துத் தூரம் $\frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$ எனக் காட்டுக.

I_1, I_2 ஆகியன முறையே $4x - 3y + 8 = 0, 3x - 4y + 13 = 0$ ஆகியவற்றினால் தரப்படும் இரு நேர்கோடுகளைக் கொள்வோம். I_1 உம் I_2 உம் $A \equiv (1, 4)$ இல் இடைவெட்டுகின்றனவெனக் காட்டுக.

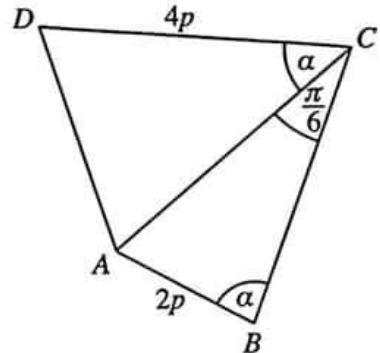
I_1 இற்கும் I_2 இற்குமிடையே உள்ள சூர்க்கோணத்தின் இருக்குறாக்கியின் பரமானச் சமன்பாடுகளை $x = t, y = t + 3$ என எழுதலாம் எனவும் காட்டுக; இங்கு $t \in \mathbb{R}$.

இதிலிருந்து, I_1, I_2 ஆகிய இரு கோடுகளையும் தொடுவதும் I_1 இற்கும் I_2 இற்குமிடையே சூர்க்கோணம் அடங்கும் பிரதேசத்தில் இருப்பதுமான வட்டம் எனதும் சமன்பாடு $(x - t)^2 + (y - t - 3)^2 = \frac{1}{25}(t - 1)^2$ இனால் தரப்படுமெனக் காட்டுக; இங்கு $t \in \mathbb{R}, t \neq 1$.

மேற்குறித்த வட்டங்களிடையே A ஜ மையமாகக் கொண்டதும் ஆனால் 1 ஜ உடையதுமான வட்டத்தை நிமிர்க்கோணமுறையாக இடைவெட்டும் வட்டங்களின் சமன்பாடுகளைக் காண்க.

17. (a) $\cos(A+B)$ ஜ $\cos A, \cos B, \sin A, \sin B$ ஆகியவற்றில் எழுதி, $\sin(A-B)$ இங்கு ஒர் இயல்போத்த கோவையைப் பெறுக.

$k \in \mathbb{R}$ எனவும் $k \neq 1$ எனவும் கொள்வோம். $k > 1, k < 1$ என்னும் வகைகளை வெவ்வேறாகக் கருதிக்கொண்டு $2k \cos\left(\theta + \frac{\pi}{3}\right) + 2 \sin\left(\theta - \frac{\pi}{6}\right)$ ஜ வடிவம் $R \cos(\theta + \alpha)$ இல் எடுத்துரைக்க; இங்கு k இல் $R(>0)$ உம், $\alpha(0 < \alpha < 2\pi)$ உம் துணியப்பட வேண்டிய மெய்ம் மாறிலிகளாகும்.


இதிலிருந்து, $2k \cos\left(\theta + \frac{\pi}{3}\right) + 2 \sin\left(\theta - \frac{\pi}{6}\right) = |k-1|$ ஜத் தீர்க்க.

(b) உருவிற் காட்டப்பட்டுள்ள நாற்பக்கல் $ABCD$ இல் $AB = 2p$, $CD = 4p$, $\hat{ACB} = \frac{\pi}{6}$, $\hat{ABC} = \hat{ACD} = \alpha$ ஆகும்.

$AD^2 = 16p^2(\sin^2 \alpha - \sin 2\alpha + 1)$ எனக் காட்டுக.

இதிலிருந்து, $AD = 4p$ எனின், $\alpha = \tan^{-1}(2)$ எனக் காட்டுக.

(c) $x > 1$ இங்கு $\tan^{-1}(\ln x^{\frac{2}{3}}) + \tan^{-1}(\ln x) + \tan^{-1}(\ln x^2) = \frac{\pi}{2}$ ஜத் தீர்க்க.
